Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T08:09:25.920Z Has data issue: false hasContentIssue false

Characterization of Un-stabilized Orthorhombic Zirconia Synthesized at Ambient Temperature and Pressure

Published online by Cambridge University Press:  11 January 2012

Miriam P. Trubelja
Affiliation:
Department of Chemical Engineering, University of Connecticut, Storrs, CT 06269-3136
Donald Potter
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269-3136
Claudia Rawn
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6062
Karren More
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6062
Joseph J. Helble
Affiliation:
Thayer School of Engineering at Dartmouth, 8000 Cummings Hall, Hanover, NH 03755-8000
Get access

Abstract

Bulk structures of un-stabilized ZrO2-x with x in the 0 ≤ x ≤ 0.44 range under ambient pressure exist in three different structures (monoclinic, tetragonal and cubic). At ambient temperature and elevated pressures above 3.5 GPa, zirconia, at these compositions, a fourth phase is found, the orthorhombic structure. A dilute sol-gel method was used to produce nanoscale zirconia particles containing the unstabilized orthorhombic cotunnite structure for use in this project. Extensive characterization of this material indicates that the critical factor in determining the synthesized structures appears to be the number and placement of oxygen vacancies. These results also indicate that surface energy alone is not the controlling factor in determining the crystal structure synthesized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ruff, O. and Ebert, F.Z., Anorg. Allgem. Chem., 180 (1929) p. 19.Google Scholar
2. Clearfield, A., Inorg. Chem., 3 [1] (1964) p. 146.Google Scholar
3. Garvie, R.C., J. Phys. Chem., 69 [4] (1965) p. 1238.Google Scholar
4. Garvie, R.C., J. Phys. Chem., 82 [2] (1978) p. 218.Google Scholar
5. Schultz, M., Grimm, St. and Burckhardt, W., Solid State Ionics, 6365, (1993) p. 18.Google Scholar
6. Ramamurthi, S.D., Xu, Z., and Payne, D.A., J. Am Ceram. Soc., 73 [9] (1990) p. 2760.Google Scholar
7. Okubo, T., and Nagamoto, H., J. Mat. Sci., 30 [3] (1995) p. 749.Google Scholar
8. Leger, J. M., Tomaszewski, P. E., Atouf, A., and Pereira, A. S., Phys. Rev. B 47 (1993), p. 14075.Google Scholar
9. Trubelja, M. P., Potter, D. P. and Helble, J. J., J. Mater. Sci., 45 (2010) p. 4480.Google Scholar
10. Leffler, M. P. and Helble, J. J., Final Project Report, DOE contract No. DE-PS22–97PC97200, 2000.Google Scholar
11. Martin, R. L, Dalton, J. C. S., (1974) p. 1335.Google Scholar
12. Hoskins, B. F., and Martin, R. L, Dalton, J. C. S., (1975) p. 576.Google Scholar
13. Hoskins, B. F., and Martin, R. L, Dalton, J. C. S., (1976) p. 676.Google Scholar
14. Bokhimi, X., Morales, A., Novaro, O., Portilla, M., Lopez, T., Tzompntzi, F., and Gomez, R., Journal of Solid State Chemistry, 135. (1998) p. 28.Google Scholar
15. Cong, Y., Li, B., Yue, S., Fan, D., and Wang, X.-J., J. Phys. Chem. C, 113 (2009) p. 13974.Google Scholar
16. Xie, S., Iglesia, E., and Bell, A. T., Chem. Mater., 12 (2000) p. 2442.Google Scholar
17. Steele, J. K., and Biederman, R. R., Materials Characterization, 27 (1991) p. 213.Google Scholar
18. Agoudjil, N., Kermadi, S. and Larbot, A., Desalination, 223 (2007) p. 417.Google Scholar
19. , M. Hu, Z. C., Harris, M. T., Ch. H. Byers, J. of Coll. Interf. Sci., 198 (1998) p. 87.Google Scholar
20. Guo, Z., Tan, L., “Fundamentals and applications of nanomaterials”, Artech House, Boston and London (2009) p. 66.Google Scholar