Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T15:42:56.022Z Has data issue: false hasContentIssue false

Characterization of the Stainless Steel Corrosion Kinetic By EIS

Published online by Cambridge University Press:  31 January 2012

R. Galvan-Martinez*
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana Av. S.S Juan Pablo II s/n, Z Universitaria, Fracc. Costa Verde, Veracruz, México, CP 94294.
M. Flores-Cocuyo
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana Av. S.S Juan Pablo II s/n, Z Universitaria, Fracc. Costa Verde, Veracruz, México, CP 94294.
R. Orozco-Cruz
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana Av. S.S Juan Pablo II s/n, Z Universitaria, Fracc. Costa Verde, Veracruz, México, CP 94294.
A. Contreras
Affiliation:
Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, México. CP 07730
Get access

Abstract

An electrochemical study was carried out in order to obtain the effects of the turbulent flow condition on the stainless steel corrosion immersed in natural seawater using an electrochemical corrosion technique like electrochemical impedance spectroscopy (EIS). A three-electrode electrochemical glass cell was used to obtain the electrochemical measures, where a cylinder of the AISI 410 stainless steel was used as working electrode, a saturated calomel electrode as reference electrode and a synthesised graphite rod as auxiliary electrode. 24 hours was the total exposure time. In order to control the hydrodynamic conditions a rotating cylinder electrode (RCE) was used and, a scanning electron microscope (SEM) was used in order to obtain the superficial analyses of the metallic surface after tests. The results of the electrochemical techniques shown that at 1000 rpm of the rotation speed, the corrosion rate (CR) increased as the exposure time also increased. In additions, in the other rotations speed (2000, 3000 and 5000 rpm), the CR was affected by the corrosion products formed on metallic surface. t is important to point out that the corrosion morphology found in the steel sample was localized corrosion.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Silverman, D.C., Corrosion, 44, 42 (1988).Google Scholar
2. Dean, S.W., Materials Performance, 28, 61 (1990).Google Scholar
3. Papavinasam, S., Revie, R.W., Attard, M., Demoz, A., Michaelian, K., Corrosion, 59, 897 (2003).Google Scholar
4. Poulson, B., Corrosion Science, 23, 391 (1983).Google Scholar
5. Poulson, B., Corrosion Science, 35, 655 (1993).Google Scholar
6. Poulson, B., J. Appl. Electrochemistry, 24, 1 (1994).Google Scholar
7. Liu, G., Tree, D. A., High, M. S., Corrosion, 50, 584 (1994).Google Scholar
8. Lotz, U., CORROSION/90, Paper no. 27, Houston, TX, NACE, (1990).Google Scholar
9. Schmitt, G., Bruckhoff, W., Faessler, K., Blummel, G., Materials Performance, 29, 85 (1991).Google Scholar
10. Silverman, D. C., Corrosion, 40, 220 (1984).Google Scholar
11. Galvan-Martinez, R., Mendoza-Flores, J., Duran-Romero, R., Genesca, J., Materials and Corrosion, 58, 514 (2007).Google Scholar
12. Galván Martínez, R., Orozco-Cruz, R., Torres-Sanchez, R., Martinez, E. A., Materials and Corrosion, 61, 872 (2010).Google Scholar
13. Nesic, S., Solvi, G. T., Enerhaug, J., Corrosion, 51, 773 (1995).Google Scholar
14. Gabe, D. R., J. Applied Electrochemistry, 4, 91 (1974).Google Scholar
15. Gabe, D. R., Walsh, F. C., J. Appl. Electrochem. 13, 3 (1983).Google Scholar
16. Galvan-Martinez, R., Mendoza-Flores, J., Duran-Romero, R., and Genesca, J., Materials and Corrosion, 7, 514 (2007).Google Scholar