Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T09:49:08.408Z Has data issue: false hasContentIssue false

Characterization of the Segregation of Arsenic at the Interface SiO2/Si

Published online by Cambridge University Press:  01 February 2011

Christian Steen
Affiliation:
[email protected], University of Erlangen-Nuremberg, Chair of Electron Devices, Cauerstr. 6, Erlangen, 91058, Germany
Peter Pichler
Affiliation:
[email protected], Fraunhofer Institute of Integrated Systems and Device Technology, 91058 Erlangen, Germany
Heiner Ryssel
Affiliation:
[email protected], University of Erlangen-Nuremberg, 91058 Erlangen, Germany
Lirong Pei
Affiliation:
[email protected], North Carolina State University, Raleigh, NC, 27695-7907, United States
Gerd Duscher
Affiliation:
[email protected], North Carolina State University, Raleigh, NC, 27695-7907, United States
Matt Werner
Affiliation:
[email protected], University of Salford, Salford, M5 4WT, United Kingdom
Jaap A. van den Berg
Affiliation:
[email protected], University of Salford, Salford, M5 4WT, United Kingdom
Wolfgang Windl
Affiliation:
[email protected], Ohio State University, Columbus, OH, 43210-1178, United States
Get access

Abstract

The segregation of As atoms at the Si/SiO2 interface during annealing was investigated by grazing incidence X-ray fluorescence spectroscopy in combination with successive removal of silicon layers by etching with thicknesses on the order of a nanometer. With this method it is possible to clearly distinguish between the segregated atoms and the As atoms in the bulk over a large range of implantation doses from 3·12 cm−2 to 1·16 cm−2. The samples were annealed at 900 °C and 1000 °C, respectively, for times sufficiently long to ensure that the segregation reflects an equilibrium effect. The results were confirmed by medium energy ion scattering, Z-contrast measurements and electron energy loss spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sai-Halasz, G. A. Short, K. T., and Williams, J. S., IEEE Electron Device Lett. 6, 285 (1985).Google Scholar
2. Shibahara, K., Furumoto, H., Egusa, K., Koh, M., and Yokoyama, S., Mat. Res. Soc. Symp. Proc. 532, 23 (1998).Google Scholar
3. Sato, Y., Nakata, J., Imai, K., and Arai, E., J. Electrochem. Soc. 142, 655 (1995).Google Scholar
4. Kasnavi, R., Sun, Y., Mo, R., Pianetta, P., Griffin, P. B., and Plummer, J. D., J. Appl. Phys. 87, 2255 (2000).Google Scholar
5. Ferri, M., Solmi, S., Parisini, A., Bersani, M., Giubertoni, D., and Barozzi, M., J. Appl. Phys. 99, 113508 (2006).Google Scholar
6. Berg, J. A. Van den, Armour, D. G., Zhang, S., Whelan, S., Ohno, H., Wang, T.-S., Cullis, A. G., Collart, E. H. J., Goldberg, R. D., Bailey, P., and Noakes, T. C. Q., J. Vac. Sci. Technol. B 20, 974 (2002).Google Scholar
7. Chu, W.K., Mayer, J.W., Nicolet, M., Backscattering Spectrometry, Academic, New York, 1978.Google Scholar
8. Bardwell, J. A., Draper, N., and Schmuki, P., J. Appl. Phys. 79(11), 8761 (1996).Google Scholar
9. Ryssel, H., Schmid, K., and Müller, H., J Physics E 6, 492 (1973).Google Scholar
10. Windl, W., Liang, T., Lopatin, S., and Duscher, G., Mater. Sci. Eng. B 114115, 156 (2004).Google Scholar
11. Dabrowski, J., Müssig, H.-J., Zavodinsky, V., Baierle, R., and Caldas, M. J., Physical Review B 65, 245305 (2002).Google Scholar