Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T09:57:50.125Z Has data issue: false hasContentIssue false

Characterization of the Mobility Gap in μc-Si:H Pin Devices

Published online by Cambridge University Press:  01 February 2011

Bart Elger Pieters
Affiliation:
[email protected], Forschungszentrum Jülich, Institut für Energieforschung - Photovoltaik, Leo-Brandt-Straße, Jülich, 52428, Germany
Sandra Schicho
Affiliation:
[email protected], Forschungszentrum Jülich, Institut für Energieforschung - Photovoltaik, Leo-Brandt-Straße, Jülich, 52428, Germany
Helmut Stiebig
Affiliation:
[email protected], Forschungszentrum Jülich, Institut für Energieforschung - Photovoltaik, Leo-Brandt-Straße, Jülich, 52428, Germany
Get access

Abstract

For the mobility gap of hydrogenated micro-crystalline silicon (μc-Si:H) a value near 1.1 eV is commonly found, similar to the bandgap of crystalline silicon. However, in other studies mobility gap values have been reported to be in the range of 1.48-1.59 eV. Indeed, for accurate modeling of μc-Si:H solar cells it is paramount that key parameters like the mobility gap are accurately determined. In this work we will discuss a method to determine the mobility gap of μc-Si:H using the dark current activation energy of μc-Si:H pin devices, and apply this method to μc-Si:H solar cells with varying crystalline volume fraction. We found the mobility gap is around 1.2 eV to 1.26 eV for μc-Si:H solar cells with a crystalline volume fraction between 50 % and 70 %. For a highly crystalline solar cell we found a mobility gap of 1.07 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J. et al. , proc. IEEE 1st. WCPEC, pp. 409412, 1994.Google Scholar
2. Brammer, T. et al. , Mater. Res. Soc. Symp. Proc. 644, pp. A19.1-6, 2001 Google Scholar
3. Xz, X. et al. , Appl. Phy. Lett., vol. 67, pp 23232325, 1995.Google Scholar
4. Hamma, S. et al. , Appl. Phys. Lett., vol. 74, pp. 32183220, 1999.Google Scholar
5. Berkel, C. van, et al. , J. App. Phys., vol 73, no 10, pp. 52645268, 1993.Google Scholar
6..Simmons, J.G. et al. , Phys. Rev. B, vol. 4, no. 2 pp. 502511, 1971.Google Scholar
7. Sze, S. M. et al. , Physics of Semiconductor Devices. Wiley-Interscience, 3 ed., 2006.Google Scholar
8. Willemen, J.A. PhD thesis, Delft University of Technology, 1998.Google Scholar
9. Zeman, M. et al. , Sol. En. Mat. Sol.Cells, vol. 46, pp. 8191, 1997.Google Scholar
10. Tsai, C.C. et al. , Solar Energy Mater., vol. 1, no.1-2, pp. 2942, 1979.Google Scholar
11. Overhof, H. et al. , J. of Non-Cryst. Solids, vol. 227-230, p. 992, 1998.Google Scholar
12. Carius, R. et al. , J. Optoelectron. Adv. Mater., Vol. 7, No. 1, pp. 485489, 2005.Google Scholar