Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T02:51:25.077Z Has data issue: false hasContentIssue false

Characterization of the Carbon-Coating of LiFePO4 by Transmission Electron Microscopy and Raman Spectroscopy

Published online by Cambridge University Press:  26 February 2011

Michel Massot
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France, 33144274561, 33144273882
Karim Zaghib
Affiliation:
[email protected], IREQ, 1800 Bd Lionel-Boulet, Varennes, J3X 1S1, Canada
Alain Mauger
Affiliation:
[email protected], CNRS, MPPU, 140 rue de Lourmel, Paris, 75015, France
François Gendron
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Christian M Julien
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Get access

Abstract

We present the properties of the carbon layer deposited at the surface of the LiFePO4 particles. Characterizations include scanning electron microscopy, high-resolution transmission electron microscopy, and Raman scattering spectroscopy. Analuysis of Raman spectra reveals that the carbon deposit is hydrogenated with very small hydrogen/carbon ratio, so that it belongs to the family of the amorphous graphitic carbon. It is expected to have the same properties (small hardness, high electronic conductivity) that favor both the Li diffusion from the LiFePO4 bulk and the charge-discharge rate of the cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
2. Huang, H., Yin, S.-C., Nazar, L. F., Electrochem. Solid State Lett. 4, A170 (2001).Google Scholar
3. Zaghib, K., Striebel, K., Guerfi, A., Shim, J., Armand, M., Gauthier, M., Electrochim. Acta 50, 263 (2004).Google Scholar
4. Ravet, N., Goodenough, J. B., Besner, S., Simoneau, M., Hovington, P., Armand, M., in Proceedings of the 196th ECS Meeting, Honolulu, Oct. 1999.Google Scholar
5. Ravet, N., Chouinard, Y., Magnan, J. F., Besner, S., Gauthier, M., Armand, M., J. Power Sources 97, 503 (2001).Google Scholar
6. Bewlay, S. L., Konstantinov, K., Wang, G. X., Dou, S. X., Liu, H. K., Mater. Lett. 58, 1788 (2004).Google Scholar
7. Julien, C. M., Zaghib, K., Mauger, A., Massot, M., Salah, A. Ait, Selmane, M. and Gendron, F., J. Appl. Phys. 100, 63511 (2006).Google Scholar
8. Yamada, A., Chung, S. C., Hinokuma, K., J. Electrochem. Soc. 148, A224 (2001).Google Scholar
9. Hu, Y., Doeff, M. M., Kostecki, R., Finones, R., J. Electrochem. Soc. 151, A1279 (2004); M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid-State Lett. 6, A207 (2003).Google Scholar
10. Lespade, P., Marchand, A., Couzi, M., Cruege, F., Carbon 22, 375 (1984).Google Scholar
11. Tamor, M. A., Vassell, W. C., J. Appl. Phys. 76, 3823 (1994).Google Scholar
12. Kostecki, R., Schnyder, B., Alliata, D., Song, X., Kinoshita, K., Kotz, R., Thin Solid Films 396, 36 (2001).Google Scholar
13. Robertson, J., O'Reilly, E. P., Phys. Rev. B 35, 2946 (1987).Google Scholar
14. Zaghib, K., Ravet, N., Gauthier, M., Gendron, F., Mauger, A., Goodenough, J. B., and Julien, C. M., Extended Abstracts of the 210th ECS meeting, Cancun (2006), Abstr. 314.Google Scholar
15. Ait-Salah, A., Mauger, A., Zaghib, K., Goodenough, J. B., Ravet, N., Gauthier, M., and Julien, C. M., J. Electrochem. Soc. 153, A1692 (2006).Google Scholar