Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T17:32:10.025Z Has data issue: false hasContentIssue false

Characterization of Silicon Carbide Thin Films Obtained Via Sublimation of a Solid Polymer Source Using Polymer-Source CVD Process

Published online by Cambridge University Press:  01 February 2011

El Hassane Oulachgar
Affiliation:
[email protected], Sherbrooke University, Department of Electrical and Computer Engineering, 2500 Blvd. University, Sherbrooke, J1K 2R1, Canada, 819-8218000 x 61216
Cetin Aktik
Affiliation:
[email protected], Department of Electrical and Computer Engineering, Sherbrooke University, Nanofabrication and Nanocharacterization Research Center (CRN2),, Sherbrooke, J1K 2R1, Canada
Starr Dostie
Affiliation:
[email protected], Bishop's University, Department of Chemistry, Sherbrooke, J1M 0C8, Canada
Subhash Gujrathi
Affiliation:
[email protected], Montreal University, Thin Film Physics and Technology Research Center (GCM), Department of Physics, Montreal, H3C 3J7, Canada
Mihai Scarlete
Affiliation:
[email protected], Bishop's University, Department of Chemistry, Sherbrooke, J1M 0C8, Canada
Get access

Abstract

Silicon carbide thin films have been deposited via sublimation of a solid organosilane polymer source using atmospheric pressure chemical vapour deposition process (PS-CVD). The advantages of this new process include high deposition rate, compatibility with batch process, hazard-free working environment and low deposition cost. The silicon carbide (SiC) thin films obtained through this process exhibit a highly uniform film thickness, highly conformal coating, and very high chemical resistance to acids and alkalis solutions. These proven characteristics make the SiC thin films obtained by PSCVD process very attractive as a structural material for micro-electro-mechanical systems (MEMS) and as a coating film in a wide range of other applications. These SiC thin films are also expected to be attractive as a semiconductor material provided that the defects and oxygen contamination can be reduced and efficiently controlled. In this work we have investigated the chemical, structural, electrical and optical properties of these films, using elastic recoil detection (ERD), Fourier transform infrared (FTIR) spectroscopy, photospectroscopy, ellipsometry, and capacitance-voltage measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ambrosone, G., Coscia, U., Lettieri, S., Maddalena, P., Ferrero, S., Thin Solid Films, 403, 349 (2002)Google Scholar
2 Kerdiles, S., Berthelot, A., Rizk, R., Applied Physics Letters, 80, 3772 (2002 Google Scholar
3 Servati, P., Vygranenko, Y., Nathan, A., Journal of Applied Physics, 96, 7578 (2004)Google Scholar
4 Young, D. J., Du, J. A., Zorman, C. A., Ko, W. H., IEEE Sensors Journal, 4, 464 (2004)Google Scholar
5 Boo, J.-H., Kim, M. C., Lee, S.-B., Park, S.-J., Han, J. G., J. Vac. Sc. Tech. A, 18, 1713 (2000)Google Scholar
6 Shimada, M., Ono, T., Okada, I., Matsuo, S., J. Vac. Sc. Tech. B, 15, 736 (1997)Google Scholar
7 Kern, R. S., Davis, R. F., Materials Science and Engineering B, 46, 240 (1997)Google Scholar
8 Wijesundara, M. B. J., Valente, G., Ashurst, W. R., Ashurst, W. R., Howe, R. T., Pisano, A. P., Carraro, C., Maboudian, R., J. Electroch. Soc., 151, C210 (2004)Google Scholar
9 Chen, J., Steckl, A. J., Lobodab, M. J., J. Electroch. Soc., 147, 2324 (2000)Google Scholar
10 Fissel, A., Kaiser, U., Schroter, B., Richter, W., Bechstedt, F., App. Surf. Sc., 184, 37 (2001)Google Scholar
11 Lee, M. S., Bent, S. F., Journal of Applied Physics, 87, 4600 (2000)Google Scholar
12 Eickhoff, M., Moller, H., Stoemenos, J., Zappe, S., Kroetz, G., Stutzmann, M., J. Appl. Phys. 95, 7908 (2004)Google Scholar
13 Colombo, P., Paulson, T. E., Pantano, C. G., J. Amer. Cer. Soc., 80, 2333 (1997)Google Scholar
14 Iseki, T., Narisawa, M., Katase, Y., Oka, K., Dohmaru, T., Okamura, K., Chem. Mat., 13, 4163 (2001)Google Scholar
15 Hurwitz, F. I., Kacik, T. A., Bu, Xln-Ya, Masnovl, J., Heimann, P. J., Beyene, K., J. Mat. Sc., 30, 3130 (1995)Google Scholar
16 Ly, H. Q., Taylor, R., Day, R. J., Heatley, F., J. Mat. Sc., 36, 4037 (2001)Google Scholar
17 Scarlete, M. and Aktik, C., U.S. Patent Application Publication, 20050139966-A1 (2005)Google Scholar
18 Awad, Y., Khakani, M.A. El, Aktik, C., Mouine, J., Camire, N., Lessard, M., Scarlete, M., Mat. Chem. Phys., 104 (2007)Google Scholar
19 Lahlouh, B., Rajagopalan, T., Biswas, N., and Sun, J., Huang, D., Simon, S.L., Lubguban, J.A., Gangopadhyay, S., Thin Solid Films, 497, 109 (2006)Google Scholar
20 Soum-Glaude, A., Thomas, L., Tomasella, E., Surf. Coat. Tech., 200, 6425 (2006)Google Scholar
21 Glaude, A. Soum, Thomas, L., Tomasella, E., Badie, J.M., Berjoan, R., Surf. Coat. Tech., 201, 174 (2006)Google Scholar
22 Hua, Z., Liaob, X., Diaob, H., Kong, G., Zeng, X., Xu, Y., J. Crys. Growth, 264, 7 (2004)Google Scholar
23 Wang, L., Xu, J., Ma, T., Li, W., Huang, X., Chen, K., J. Alloys and Comp., 290, 273 (1999)Google Scholar