Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-02T22:22:38.253Z Has data issue: false hasContentIssue false

Characterization of Organically Modified Silicates by 17O Solid State MAS and MQ-MAS NMR

Published online by Cambridge University Press:  10 February 2011

V. Gualandris
Affiliation:
Chimie de la Matière Condensèe, UPMC - CNRS, 4 place Jussieu, 75005 Paris, France
J. Maquet
Affiliation:
Chimie de la Matière Condensèe, UPMC - CNRS, 4 place Jussieu, 75005 Paris, France
F. Babonneau
Affiliation:
Chimie de la Matière Condensèe, UPMC - CNRS, 4 place Jussieu, 75005 Paris, France
P. Florian
Affiliation:
CRMHT- CNRS, ID avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France
D. Massiot
Affiliation:
CRMHT- CNRS, ID avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France
Get access

Abstract

Organically modified silicates have been prepared, using methyltriethoxysilane and tetraethoxysilane in various molar ratios. The final network is thus composed of trifunctionnal T units and tetrafunctionnal Q units. Three types of oxo bridges can be formed through the competitive self-condensation or co-condensation reactions : (T)-O-(T), (Q)-O-(Q) and (T)-O-(Q). 17O-enriched water was used as reactant in order to selectively enrich the various oxo bridges, and to perform 17O solid state MAS-NMR. The combination of MAS experiments recorded at two different magnetic fields, and of the recently discovered MQ-MAS experiments allowed us to identify clearly the three types of oxo bridges. Quantitative analysis was extracted from the MAS-NMR spectra, and compared with calculations based on randomly distributed Si units.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Babonneau, F., Maquet, J., Livage, J., Chem. Mater. 7, p. 1050 (1995)10.1021/cm00054a002Google Scholar
2. Babonneau, F., Gualandris, V., Pauthe, M., Mat. Res. Soc. Symp. Proc. 435, p. 119 (1996)10.1557/PROC-435-119Google Scholar
3. Bastow, T. J., Stuart, S. N., Chem. Phys. 143, p. 459 (1990)10.1016/0301-0104(90)87025-7Google Scholar
4. Schramm, S., Oldfield, E., J. Am. Chem. Soc. 106, p.2502 (1984)10.1021/ja00321a002Google Scholar
5. Walter, T. H., Turner, G. L., Oldfield, E., J. Magn. Res. 76, p. 106 (1988)Google Scholar
6. Jädger, C., Dupree, R., Kohn, S. C., Mortuza, M. G., J. Non Cryst. Solids 155, p. 95 (1993)10.1016/0022-3093(93)90476-EGoogle Scholar
7. Medek, A., Harwood, J. S., Frydman, L., J. Am. Chem. Soc. 117, p. 12779 (1995)10.1021/ja00156a015Google Scholar
8. Dirken, P. J., Kohn, S. C., Smith, M. E., Eck, E. R. H Van, Chem. Phys. Lett. 266, p.568 (1997)10.1016/S0009-2614(97)00041-9Google Scholar
9. Wang, S., Stebbins, J. F., J. Non Cryst. Solids 231, p. 286 (1998)10.1016/S0022-3093(98)00703-0Google Scholar
10. Massiot, D., Touzo, B., trumeau, D., Coutures, J. P., Virlet, J., Florian, P., Grandinetti, P. J., Solid State NMR 6, p. 73 (1996).10.1016/0926-2040(95)01210-9Google Scholar
11. RMN, Grandinetti, P.J., Dept of Chemistry, Ohio State University.Google Scholar
12. Massiot, D., Thiele, H., Germanus, A., Bruker Report 140, p. 43 (1994)Google Scholar