Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T15:36:52.373Z Has data issue: false hasContentIssue false

Characterization of Nanosized Silicon Prepared by Mechanical Attrition for High Refractive Index Nanocomposites

Published online by Cambridge University Press:  10 February 2011

Dorab E. Bhagwagar
Affiliation:
Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT 06279, [email protected]
Peter Wisnfficki
Affiliation:
Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT 06279, [email protected]
Fotios Papadimtrakopoulos*
Affiliation:
Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT 06279, [email protected]
*
* To whom correspondence should be addressed
Get access

Abstract

High pressure nanomilling provides an inexpensive, environmentally conscious method to fabricate large quantities of nanoparticles. The presence of large particle sizes, inherent in mechanical attrition processes pose obstacles in identifying the optical properties of these nanosized particles. The high refractive index and relatively small absorption coefficient of silicon (Si) directed our research efforts towards Si nanoparticles. We presently report simple separation procedure which allows us to utilize a range of tools to characterize and exploit properties in the nano size range. Employing these Si nanoparticles, high refractive index nanocomposites in gelatin were fabricated with values as high as 3.2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L. J. Phys. Chem. 1994, 98, 3575.Google Scholar
2. Weibel, M.; Caseri, W.; Suter, U. W.; Kiess, H.; Wehrli, E. Poly. Adv. Tech. 1991, 2, 75.Google Scholar
3. Zimmermann, L.; Weibel, M.; Caseri, W.; Suter, U. W. J. Mater. Res. 1993, 8, 1742.Google Scholar
4. Kyprianidou-Leodidou, T.; Caseri, W.; Suter, U. W. J. Phys. Chem. 1994, 98, 8992.Google Scholar
5. Schmitt-Rink, S.; Miller, D. A. B.; Chemia, D. S. Phys. Rev. B 1987, 35, 8113.Google Scholar
6. Handbook of Optical Constants of Solids; Palik, E. D., Ed.; Academic Press: Orlando, 1985.Google Scholar
7. Littau, K. A.; Szajowski, P. J.; Muller, A. J.; Kortan, A. R.; Brus, L. E. J. Phys. Chem. 1993, 97, 1224.Google Scholar
8. Heinrich, J. L.; Curtis, C. L.; Credo, G. M.; Kavanagh, K. L.; Sailor, M. J. Science 1992, 255, 66.Google Scholar
9. Koch, C. C. Nanostructured Mat. 1993, 2, 109.Google Scholar
10. Particle Sizing Systems, Inc. Santa Barbra, CA.Google Scholar
11. Shen, T. D.; Koch, C. C.; McCormick, T. L.; Nemanich, R. J.; Huang, J. Y.; Huang, J. B. J. Mater. Res. 1995, 10, 139.Google Scholar
12. Henglein, A. Chem. Rev. 1989, 89, 1861.Google Scholar
13. Fojtik, A.; Weiler, H.; Fiechter, S.; Henglein, A. Chem. Phys. Lett. 1987, 134, 477.Google Scholar