Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T16:27:29.807Z Has data issue: false hasContentIssue false

Characterization of Nanocones Grown During DC Magnetron Sputtering of an ITO Target

Published online by Cambridge University Press:  15 February 2011

J.F. Conley Jr
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, 5700 NW Pacific Rim Blvd., Camas, WA, 98607
D. McClain
Affiliation:
Portland State University, P.O. Box 751, Portland, OR, 97207
J. Jiao
Affiliation:
Portland State University, P.O. Box 751, Portland, OR, 97207
W. Gao
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, 5700 NW Pacific Rim Blvd., Camas, WA, 98607
D. Evans
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, 5700 NW Pacific Rim Blvd., Camas, WA, 98607
Y. Ono
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, 5700 NW Pacific Rim Blvd., Camas, WA, 98607
Get access

Abstract

A low temperature method for uniform growth of In2O3 nanostructures on Si wafers that does not require separate catalyst materials or template-assistance is investigated. Nanostructures are uniformly deposited on either bare or SiO2 thin film coated Si substrates via DC magnetron sputtering at 200-400°C using a 90% In2O3 / 10% SnO2 (ITO) target. The nanostructures are approximately 500 nm long, sit atop an accompanying underlying 100 nm conductive film, and are conically shaped, with a diameter of about 80 nm at the base, tapering to a point that is capped with a spherical “ball”. X-ray diffraction (XRD) indicates a cubic In2O3 phase. Field emission from the tips is observed at a base pressure of 10-8 Torr with turn-on fields in a range between 45-75 V/cm and threshold fields from 64-105 V/cm. Nanocone growth is investigated with respect to O2 and Ar flow rates, temperature, power, pressure, wafer rotation, and time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., and Choi, H.J., Adv. Func. Mat. 12(5), 323 (2002).Google Scholar
2 Lieber, C.M., MRS Bulletin, p. 486491, (July, 2003).Google Scholar
3 Li, C., Zhang, D., Han, S., Liu, X., Tang, T., Lei, B., Liu, Z., and Zhou, C., Ann. N.Y., Acad. Sci. 1006, 104 (2003).Google Scholar
4 Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J., and Zhou, C., Appl. Phys. Lett. 82(10), 1613 (2003).Google Scholar
5 Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
6 Zheng, M.J., Zhang, L.D., Li, G.H., Zhang, X.Y., and Wang, X.F., Appl. Phys. Lett. 79(6), 839 (2001).Google Scholar
7 Wu, X.C., Hong, J.M., Han, Z.J., and Tao, Y.R., Chem. Phys. Lett. 373, 28 (2003).Google Scholar
8 Peng, X.S., Meng, G.W., Wang, X.F., Wang, Y.W., Zhang, J., Liu, X., and Zhang, L.D., Chem. Mater. 14, 4490 (2002).Google Scholar
9 Frank, G., Brock, L., and Bausen, H.D., J. Cryst. Growth 36, 179 (1976).Google Scholar
10 Conley, J.F. Jr, Li, C., Jiao, J., Evans, D., and Ono, Y., to be published.Google Scholar
11 Yumoto, H., Sako, T., Gotoh, Y., Nishiyama, K., and Kaneko, T., J. Crystal Growth 203, 136 (1999).Google Scholar