Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T19:48:43.855Z Has data issue: false hasContentIssue false

Characterization of multimetallic nanomaterial obtained from cyanidation solutions.

Published online by Cambridge University Press:  24 February 2012

M. Soria-Aguilar
Affiliation:
Facultad de Metalurgia, U. A. de C. Carretera 57 K. 4.5, Monclova, Coahuila, México.
F. Carrillo-Pedroza
Affiliation:
Facultad de Metalurgia, U. A. de C. Carretera 57 K. 4.5, Monclova, Coahuila, México.
L.A. García-Cerda
Affiliation:
Centro de Investigación en Química Aplicada, Saltillo, Coahuila, México.
M. Sanchez-Castillo
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, SLP, México.
A. Dávalos-Sánchez
Affiliation:
Facultad de Metalurgia, U. A. de C. Carretera 57 K. 4.5, Monclova, Coahuila, México.
D. Puente-Siller
Affiliation:
Facultad de Metalurgia, U. A. de C. Carretera 57 K. 4.5, Monclova, Coahuila, México.
Get access

Abstract

The cyanide is the main process for the extraction of gold from its ores. This process produces rich cyanide solutions containing gold and silver, and waste cyanide solutions with different metal compounds such as copper, zinc and iron. These elements or compounds can be extracted in the form of high-value compounds as nanoparticles. This work presents some result of the remove and recovery of metallic values from waste cyanide solutions to obtain novel metallic nanoparticles. These materials were obtaining by modified sol-gel method from an industrial cyanide waste solution previously treated by advanced oxidation. This work reports the characterization from the nanoparticles by DRX and SEM-EDX. The results indicate that multimetallic nanoparticles can be obtained from cyanidation effluents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kakihana, M.. “Sol-Gel” preparation of high temperature superconducting oxides. Journal of Sol-Gel Science and Technology 6, 755 (1996).Google Scholar
2.García-Cerda, L. A., Romo-Mendoza, L. E., Quevedo-López, M. A.. Synthesis and characterization of NiO nanoparticles and their PMMA nanocomposites obtained by in situ bulk polymerization. J Mater Sci (2009) 44:45534556.Google Scholar
3.Gvishi, R.. Fast sol–gel technology: from fabrication to applications. J Sol-Gel Sci Technol (2009) 50:241253Google Scholar
4.Campero, A., Cardoso, J., Pacheco, S.. Ethylene Glycol-Citric Acid-Silica Hybrid Organic-Inorganic Materials Obtained by the Sol-Gel Method. Journal of Sol-Gel Science and Technology 8, 535539 (1997).Google Scholar
5.Segal, D.. Chemical synthesis of ceramic materials. J. Mater. Chem., 1997, 7(8), 12971305Google Scholar
6.Zhou, B., Parasher, S., Rueter, M., USPatent application number: 20090298684, (2009).Google Scholar
7.Nishimura, T., Hoshoda, S., Can. Metall. Quarterly, 47(1), 2736, (2008)Google Scholar
8.Soria-Aguilar, M. J., de la Cruz-Terrazas, E., Sánchez-Castillo, M., Carrillo-Pedroza, F. R., Proceedings of IV International Scientific Conference of Environment, ISBN 978-959-25045-61, Santa Clara, Cuba, 3 al 6 de noviembre del 2009.Google Scholar