Published online by Cambridge University Press: 22 February 2011
Two NDT techniques were used to characterize low-density, microcellular, carbon foams fabricated from a salt replica process. The two techniques are x-ray computed tomography (CT) and ion microtomography (IMT); data are presented on carbon foams that contain high-density regions. The data show that densities which differ by <10% are easily observable for these low density (<100 mg/cm3) materials. The data reveal that the carbon foams produced by this replica process have small density variations; the density being ∼30% greater at the outer edges than when compared to the interior of the foam. In addition, the density gradient is found to be rather sharp, that is the density drops-off rapidly from the outer edges to a uniform one in the interior of the foam. This edge build-up in carbon density was explained in terms of polymer concentrating on the foam exterior during drying which immediately followed a polymer infusion processing step. Supporting analytical data from other techniques show the foam material to be >99.9 % carbon