Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T08:37:20.427Z Has data issue: false hasContentIssue false

Characterization of Local Electrical Property of Coincidence Site Lattice Boundary in Location-controlled Silicon Islands by Scanning Probe Microscopy

Published online by Cambridge University Press:  01 February 2011

Nobuyuki Matsuki
Affiliation:
[email protected], Delft Institute of Technology, Delft Institute of Microsystems and Nanoelectronics, Feldmannweg 17, Delft, 2628 CT, Netherlands, +31 27 86294, +31 26 22163
R. Ishihara
Affiliation:
[email protected], Delft University of Technology, Delft Institute of Microsystems and Nanoelectronics, Feldmannweg 17, Delft, 2628 CT, Netherlands
A. Baiano
Affiliation:
[email protected], Delft University of Technology, Delft Institute of Microsystems and Nanoelectronics, Feldmannweg 17, Delft, 2628 CT, Netherlands
Y. Hiroshima
Affiliation:
[email protected], SEIKO EPSON Corporation, Frontier Device Research Center, 281 Fujimi, Fujimi-machi, Suwa-gun,, Nagano, 399-0293, Japan
S. Inoue
Affiliation:
[email protected], SEIKO EPSON Corporation, Frontier Device Research Center, 281 Fujimi, Fujimi-machi, Suwa-gun,, Nagano, 399-0293, Japan
C.I.M. Beenakker
Affiliation:
[email protected], Delft University of Technology, Delft Institute of Microsystems and Nanoelectronics, Feldmannweg 17, Delft, 2628 CT, Netherlands
Get access

Abstract

Local electrical property of coincidence site lattice boundaries (CSLBs) in location-controlled silicon islands, which are fabricated using micro-Czochralski process (grain filter), was characterized by scanning spreading resistance microscopy (SSRM) and scanning spreading resistance microscopy (SCM). Some CSLBs found in a silicon island are analyzed as Sigma 3 and Sigma 9 by electron back scattering diffraction pattern. These CSLBs are determined as {111}Sigma 3 and {221}Sigma 9 by referring to previous observation results made by transmission electron microscopy. {111}Sigma3 CSLBs shows no activity for SCM or SSRM; this is consistent with previous prediction that {111}Sigma 3 CSLB is not electrical active. We verified a capability of SCM and SSRM for characterizing local electrical property of coincidence site lattice boundary in silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuriyama, H., Kuwahara, T., Ishida, S., Nohda, T., Sano, K., Iwata, H., Noguchi, S., Kiyama, S., Tsuda, S., Nakano, S., Osumi, S., and Kuwano, Y.., Jpn. J. Appl. Phys., 31, 4550 (1992).Google Scholar
2. Ishihara, R. and Matsumura, M., Electronic Letters 31, 1956 (1995).Google Scholar
3. Lee, S. W. and Joo, S. K., IEEE Elect. Device Lett. 17, 160 (1996).Google Scholar
4. Higashi, N., Nalazawa, G., Asano, T., Miyasaka, M., and Stoemenos, J., Jpn. J. Appl. Phys. 45, 4347 (2006).Google Scholar
5. Im, J.S. and Kim, H. J., Appl. Phys. Lett. 64, 2303 (1994).Google Scholar
6. Tai, M., Hatano, M., Yamaguchi, S., Noda, T., Park, S.K., Shiba, T., and Ohkura, M., IEEE Trans. Electr. Devices 51, 934 (2004).Google Scholar
7. , Hara, Takeuchi, F., Takei, M., Suga, K., Yoshino, K., Chida, M., Sano, Y., and Sasaki, N., Jpn. J. Appl. Phys. 41, L311 (2002).Google Scholar
8. Oh, C. H., Ozawa, M., and Matsumura, M., Jpn. J. Appl. Phys. 37, L492–L495 (1998).Google Scholar
9. Ishihara, R., Wilt, P.C. van der, Dijk, B.D. van, Burtsev, A., Metselaar, J.W., and Beenakker, C.I.M, Thin Solid Films, 427, 77, (2003).Google Scholar
10. Ishihara, R., Hiroshima, Y., Abe, D., Dijk, B.D. van, Wilt, P.C. van der, Higashi, S., Inoue, S., Shimoda, T., Metselaar, J.W., and Beenakker, C.I.M., IEEE Trans. Electron Devices 51, 500 (2004).Google Scholar
11. Ishihara, R., He, M., Rana, V., Hiroshima, Y., Inoue, S., Shimoda, T., Metselaar, J. W., and Beenakker, C.I.M., Thin Solid Films, 487, 97 (2005).Google Scholar
12. Tsurekawa, S., Kido, K., and Watanabe, T., Mat. Sci. Eng., A 462, 61 (2007).Google Scholar
13. Cohen, Visoly-Fisherm S.R., Gartsman, K., Ruzin, A., and Cahen, D., Adv. Funct. Mater. 2006, 649 (2006).Google Scholar
14. Yamagata, H., Abo, S., F, Wakaya, Takai, M., Sakamoto, T., Tokioka, H., and Nakagawa, N., Appl. Phys. Lett., 89, 062101 (2006).Google Scholar
15. Lee, D.T., Pelt, J.P., and Bhushan, B., Rev Sci. Instrum., 73, 3525 (2002).Google Scholar
16. Ishihara, R., Danciu, D., Tichelaar, F., He, M., Hiroshima, Y., Inoue, S., Shimoda, T., Metselaar, J.W., and Beenakker, C.I.M., J. Cryst. Growth. 299, 316 (2007).Google Scholar
17. Garg, W. Clark, A.T., and Hirth, J.P., Philo. Mag, A 59, 479 (1989).Google Scholar
18. Kohyama, M. and Yamamoto, R., Phys. Rev. B 50 8502 (1994).Google Scholar