Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-07T23:02:38.520Z Has data issue: false hasContentIssue false

Characterization of Laterally Selected Si Doped Layer Formed in GaAs Using a Low-Energy FIB-MBE Combined System

Published online by Cambridge University Press:  03 September 2012

H. Nakayama
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
J. Yanagisawa
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
F. Wakaya
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
Y. Yuba
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
S. Takaoka
Affiliation:
Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan
K. Murase
Affiliation:
Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560, Japan
K. Gamo
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560, Japan
Get access

Abstract

200 eV and 30 keV Si2+ FIB were implanted in an MBE-grown GaAs layer in a dose range of 1012 and 1013 cm-2. Successive overlayer regrowth of the GaAs cap layer and postannealing at 800 °C for 3 – 30 s was performed to form buried thin δ-doped like layers. From the measurement of the sheet carrier density and the mobility, it was observed that doped layers had a carrier density ranging from 5×1011 to 1×1013 cm-2 and mobilities which were almost the same order in magnitude as that of an MBE-grown δ-doped sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takamori, A., Miyauchi, E., Arimoto, H., Bamba, Y. and Hashimoto, H., Jpn. J. Appl. Phys. 23, L599 (1984).Google Scholar
2. Kawano, A., Arimoto, H., Kitada, H., Endoh, A. and Fujii, T., Jpn. J. Appl. Phys. 30, L71 (1991).Google Scholar
3. Thompson, J. H., Ritchie, D. A., Jones, G. A. C., Linfield, E. H., Frost, J. E. F., Churchill, A. C., Smith, G. W., Lee, D., Houlton, M. and Whitehouse, C. R., Surface Sci. 267, 69 (1992).Google Scholar
4. Linfield, E. H., Jones, G. A. C., Ritchie, D. A., Hamilton, A. R. and Iredale, N., J. Crystal Growth 127, 41 (1993).Google Scholar
5. Ishibashi, T., Fischer, A., Wiech, A. D. and Ploog, K., Appl. Phys. Lett. 62, 513 (1993).Google Scholar
6. Itoh, M., Saku, T., Fujisawa, T., Hirayama, Y. and Tarucha, S., Jpn. J. Appl. Phys. 33, 771 (1994).Google Scholar
7. Yanagisawa, J., Nakayama, H., Wakaya, F., Yuba, Y. and Gamo, K., Mat. Res. Soc. Symp. Proc. 396, 701 (1996).Google Scholar
8. Yanagisawa, J., Nakayama, H., Wakaya, F., Yuba, Y. and Gamo, K., to be published in Jpn. J. Appl. Phys.Google Scholar
9. Schubert, E. F., Fischer, A. and Ploog, K., IEEE Transactions on Electron Devices ED–33, 625 (1986).Google Scholar
10. Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980); J. F. Zieglar, J. P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
11. Stoffel, N. G., Schwarz, S. A., Pudensi, M. A. A., Kash, K., Florez, L. T., Harbison, J. P. and Wilkens, B. J., Appl. Phys. Lett. 60, 1603 (1992).Google Scholar
12. Wakaya, F., Yuba, Y., Takaoka, S., Murase, K. and Gamo, K., Jpn. J. Appl. Phys. 32, 6242 (1993).Google Scholar