Published online by Cambridge University Press: 15 February 2011
A characterization of Q-switched Nd-YAG laser induced backside damage in various stages of a bipolar process is presented. TEM-analysis shows the occurence of microcracks, low angle boundaries and dislocations in as-irradiated wafers, of which the microcracks anneal out during an initial oxidation at 1050°C. The other damage is very stable and remains even after a heat treatment at 1200°C. This is quite in contrast with mechanically or Ar implantation induced backside damage, which anneal out completely at such high temperatures. Side effects of laser induced backside damage such as surface roughness and influence on wafer strength are found to be of no consequence within a limited range of laser pulse energy densities where the gettering efficiency is found to be very promising.