Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:56:40.810Z Has data issue: false hasContentIssue false

Characterization of Ion-Implanted Si Rapidly Annealed with Incoherent Light

Published online by Cambridge University Press:  15 February 2011

J. L. Benton
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
D. C. Jacobson
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
L. C. Kimerling
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
D. J. Lischner
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974 Bell Laboratories, Allentown, Pennsylvania 18103
G. L. Miller
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
Mc.D. Robinson
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Irradiation of Si wafers for 5 to 10 sec with high intensity tungsten halogen lamps produces complete recovery of the displacement damage resulting from ion implantation. Data for two different thermal cycles are presented, with As and B implant doses ranging from 1013 to 1016 ions cm−2. Sheet resistance measurements combined with Rutherford backscattering indicate full electrical activation of dopants with very little diffusion. Carrier lifetimes measured by a photoconductive method and by diode reverse recovery compare favorably with furnace annealing data, and capacitance transient spectroscopy reveals a low density of defects in the junction depletion region. These results combined with the inherent advantages of low cost and high efficiency make Rapid Thermal Annealing ideally suited for VLSI device fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gat, A., Gibbons, J. F., Magee, T. J., Peng, J., Deline, V. R., Williams, P., Evans, C. A., Appl. Phys. Lett. 32, 276 (1978).Google Scholar
2. Williams, J. S., Brown, W. L., Leamy, H. J., Poate, J. M., Rodgers, J. M., Rousseau, D., Rozgonyi, G. A., Shelnutt, J. A., Sheng, T. T., Apl. Phys. Lett. 33, 542 (1978).Google Scholar
3. Benton, J. L., Kimerling, L. C., Miller, G. L., Robinson, D. A. H., Celler, G. K., Laser Solid Interactions & Laser Processing – 1978 (A.I.P. Conf. Proc. No. 50, New York, 1979), p. 543.Google Scholar
4. Johnson, N. M., Gold, R. B., Lieloila, A. and Gibbons, J. F., Laser Solid Interactions and Laser Processing – 1978 (A.I.P. Conf. Proc. No. 50, New York, 1979) p. 550.Google Scholar
5. Nishiyama, K., Arai, M., Watanabe, N., Jap. J. Appl. Physics 19, L563 (1980).CrossRefGoogle Scholar
6. Powell, R. A., Yep, T. O., Fulks, R. T., Appl. Phys. Lett. 39, 150 (1981).Google Scholar
7. Fulks, R. T., Russo, C. J., Hansley, P. R., Kamins, T. I., Appl. Phys. Lett. 39, 604 (1981).Google Scholar
8. McMahon, R. A. and Ahmed, A., in “Laser and Electron Beam Processing of Electronic Materials”, Anderson, C. L., Celler, G. K., and Rozgonyi, G. A., eds. (ECS, Princeton 1980) p. 123.Google Scholar
9. Tsai, M. Y., Morehead, F. F., Baglin, J.E.E., and Michael, A. E., J. Appl. Phys. 51, 3230 (1950).Google Scholar
10. Miller, G. L., Robinson, D. A. H., and Ferris, S. D., Semiconductor Characterization Techniques (Electrochemical Soc., Princeton, 1978).Google Scholar
11. Lischner, D. J. and Celler, G. K., Laser and Electron Beam Interaction with Solids, Appleton, B.R. and Celler, G. K., eds., (North Holland, New York 1982).Google Scholar
12. Graff, K. and Pieper, H., Semiconductor Silicon 1981, Huff, H. R., Kriegler, R. J. and Takeishi, Y., Eds. (The Electrochemical Society, Pennington, NJ 1981) p. 385.Google Scholar
13. Kimerling, L. C., Benton, J. L., and Rubin, J. J., Defect Radiation Effects in Semiconductors 1980, (Inst. Phys. Conf. Ser. No. 59, 1981) p. 217.Google Scholar
14. Antoniadis, D. A., Hansen, S. E., Dutton, R. W., “SUPREM II - A Program for Process Modeling and Simulation”, Tech. Report No. 5019–2, Stanford Univ., June 1978.Google Scholar