Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T16:44:49.025Z Has data issue: false hasContentIssue false

Characterization of High Ge Content SiGe Heterostructures and Graded Alloy Layers Using Spectroscopic Ellipsometry

Published online by Cambridge University Press:  28 February 2011

A. R. Heyd
Affiliation:
NASA Lewis Research Center, 21000 Brookpark Road, MS 54-5, Cleveland, OH 44135 This work was performed while the author held a National Research Council-NASA Research Associateship
S. A. Alterovitz
Affiliation:
NASA Lewis Research Center, 21000 Brookpark Road, MS 54-5, Cleveland, OH 44135
E. T. Croke
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd, MS RL63, Malibu, CA 90265
Get access

Abstract

SixGe1–x heterostructures on Si substrates have been widely studied due to the maturity of Si technology. However, work on SixGe1–x heterostructures on Ge substrates has not received much attention. A SixGe1–x: layer on a Si substrate is under compressive strain while SixGe1–x on Ge is under tensile strain; thus the critical points will behave differently. In order to accurately characterize high Ge content SixGe1–x layers the energy shift algorithm, which is used to calculate alloy compositions, has been modified. These results have been used along with variable angle spectroscopic ellipsometry (VASE) measurements to characterize SixGe1–x/Ge superlattices grown on Ge substrates. The results are found to agree closely with high resolution x-ray diffraction measurements made on the same samples.

The modified energy shift algorithm also allows the VASE analysis to be upgraded in order to characterize linearly graded layers. In this work VASE has been used to characterize graded SixGe1–x layers in terms of the total thickness, and the start and end alloy composition. Results are presented for a 1 µm SixGe1–x layer linearly graded in the range 0.5 ≤ x ≤ 1.0.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sieg, R. M., Alterovitz, S. A., Croke, E. T., and Harrell, M. J., Appl. Phys. Lett. 62, 1626 (1993).Google Scholar
2 Sieg, R. M., Alterovitz, S. A., Croke, E. T., Harrell, M. J., Tanner, M., Wang, K. L., Mena, R. A., and Young, P. G., J. Appl. Phys. 74, 586 (1993).Google Scholar
3 Jellison, G. E. Jr., Haynes, T. E., and Burke, H. H., Opt. Mater. 2, 105 (1993).Google Scholar
4 Snyder, P. G., Rost, M. C., Bu-Abbud, G. H., Woollam, J. A., and Alterovitz, S. A., J. Appl. Phys. 60, 3293 (1986).Google Scholar
5 Speriosu, V. S. and Vreeland, T. Jr., J. Appl. Phys. 56, 1591 (1984).Google Scholar
6 Hauenstein, R. J., Clemens, B. M., Miles, R. H., Marsh, O. J., Croke, E. T., and McGill, T. C., J. Vac. Sci. Technol. B 7, 767(1989).Google Scholar
7 Snyder, P. G., Woollam, J. A., Alterovitz, S. A., and Johs, B., J. Appl. Phys. 68, 5925 (1990).Google Scholar
8 Humlíček, J., Garriga, M., Alonso, M. I., and Cardona, M., J. Appl. Phys. 65, 2827 (1989).Google Scholar
9 Yao, H., Woollam, J. A., Wang, P. J., Tejwani, M. J., and Alterovitz, S. A., Appl. Surf. Sci. 63, 52 (1993).Google Scholar
10 Pickering, C., Carline, R. T., Robbins, D. J., Leong, W. Y., Barnett, S. J., Pitt, A. D., and Cullis, A. G., J. Appl. Phys. 73, 239 (1993).Google Scholar
11 Pickering, C., Carline, R. T., Robbins, D. J., Leong, W. Y., Pitt, A. D., and Cullis, A. G., Proc. Soc. Photo-Opt. Instrum. Eng. 1985, 414 (1993).Google Scholar
12 Lautenschlager, P., Garriga, M., Viña, L., and Cardona, M., Phys. Rev. B 36, 4821 (1987).Google Scholar
13 Yang, E. S., Microelectronic Devices (McGraw-Hill, New York, 1988).Google Scholar
14 Pollak, F. H., in Strained-layer superlattices: Physics, Vol. 32 of Semiconductors and semimetals, edited by Pearsall, T. P. (Academic Press, San Diego, CA, 1990), Chap. 2, pp. 1753.Google Scholar
15 Hu, Y. Z., Zettler, J.-T., Chongsawangvirod, S., Wang, Y. Q., and Irene, E. A., Appl. Phys. Lett. 61, 1098 (1992).Google Scholar