Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T03:56:03.022Z Has data issue: false hasContentIssue false

Characterization of Epitaxial Pb(Zrx,Ti1-x)O3 Thin Films with Composition Near the Morphotropic Phase Boundary

Published online by Cambridge University Press:  11 February 2011

Keisuke Saito
Affiliation:
PANalytical Application Laboratory, Sagamihara 228–0803, Japan
Toshiyuki Kurosawa
Affiliation:
PANalytical, Tokyo 108–0057, Japan
Takao Akai
Affiliation:
PANalytical, Tokyo 108–0057, Japan
Shintaro Yokoyama
Affiliation:
Tokyo Institute of Technology, Yokohama 226–8502, Japan
Hitoshi Morioka
Affiliation:
Tokyo Institute of Technology, Yokohama 226–8502, Japan
Takahiro Oikawa
Affiliation:
Tokyo Institute of Technology, Yokohama 226–8502, Japan
Hiroshi Funakubo
Affiliation:
Tokyo Institute of Technology, Yokohama 226–8502, Japan
Get access

Abstract

200-nm-thick Pb(Zrx,Ti1-x)O3 (PZT) thin films with zirconium composition in the range from 0% to 65% were epitaxially grown on (001)c SrRuO3 (SRO)//SrTiO3 (STO) single crystal substrates by pulsed metalorganic chemical vapor deposition (pulsed MOCVD). Constituent crystallographic phases were characterized by high-resolution X-ray diffraction reciprocal space mapping. It was found that PZT thin films having zirconium composition from 45% to 60% show mixed tetragonal and pseudocubic phases and their lattice parameters remained constant in this composition range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaffe, B., Cook, W. and Jaffe, H., Piezoelectric Ceramics (Academic, London, 1971).Google Scholar
2. Kuwata, J., Uchino, K. and Nomura, S., Jpn. J. Appl. Phys. 21, 1298 (1982).Google Scholar
3. Mishra, S., Pandey, D. and Singh, A., Appl. Phys. Lett. 69, 1707 (1996).Google Scholar
4. Noheda, B., Cox, D., Shirane, G., Gonzalo, J., Cross, L. and Park, S., Appl. Phys. Lett. 74, 2059 (1999).Google Scholar
5. Noheda, B., Gonzalo, J., Cross, L., Guo, R., Park, S., Cox, D. and Shirane, G., Phys. Rev. B61, 8687 (2000).Google Scholar
6. Ragini, , Ranjan, R., Mishra, S. and Pandey, D., J. Appl. Phys. 92, 3266 (2002).Google Scholar
7. Saito, K., Oikawa, T., Kurosawa, T., Akai, T. and Funakubo, H., J. Appl. Phys. (submitted for publication)Google Scholar
8. Saito, K., Nagashima, K., Aratani, M., Yamaji, I., Akai, T. and Funakubo, H., Proc. 12th IEEE International Symposium on Applications of Ferroelectrics (2000).Google Scholar
9. Saito, K., Oikawa, T., Yamaji, I., Akai, T. and Funakubo, H., J. Cryst. Growth 237, 464 (2002).Google Scholar
10. Saito, K., Oikawa, T., Kurosawa, T., Akai, T. and Funakubo, H., Trans. Mater. Res. Soc. Japan, 27 [1], 215 (2002).Google Scholar
11. Nagashima, K., Aratani, M. and Funakubo, H., J. Appl. Phys. 89, 4517 (2001).Google Scholar
12. Takayama, R. and Tomita, Y., J. Appl. Phys. 65, 1666 (1989).Google Scholar
13. Saito, K., Yamaji, I., Akai, T., Aratani, M., Nagashima, K., and Funakubo, H., in Proceedings of the Twelfths International Symposium of Application of Ferroelectrics (ISAF-2000) (Hawaii, 30 July-1 Aug, 2000), pp. 913.Google Scholar
14. Koukhar, V., Pertsev, N. and Waser, R., Phys. Rev. B64, 214103–1 (2001).Google Scholar
15. Chen, H., Udayakumaru, K., Gaskey, C. and Cross, L., Appl. Phys. Lett. 67, 3411 (1995).Google Scholar
16. Oikawa, T., Aratani, M., Saito, K. and Funakubo, H., J. Cryst. Growth 237–239, 455 (2002).Google Scholar