Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T07:43:50.299Z Has data issue: false hasContentIssue false

Characterization of Dark-Block Defects in Cantilever Epitaxial GaN on Sapphire

Published online by Cambridge University Press:  11 February 2011

P. P. Provencio
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
N. A. Missert
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
D. D. Koleske
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
C. C. Mitchell
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
A. A. Allerman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
C. I. H. Ashby
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
Get access

Abstract

Cantilever epitaxy of GaN on sapphire has been augmented by the use of initial facetted GaN growth on narrow sapphire mesas (< 1μm) in order to turn remaining threading dislocations from vertical to horizontal, and thus reduce the overall dislocation density at the surface where devices would be placed. With this modification, isolated non-radiative block-like defect areas have been introduced that hinder optical and electronic material performance. Here we characterize these defects with microscopy, and show that they are arrays of lateral dislocations, with cracks and voids along their centerlines. We deduce that they result when tilted GaN is joined to neighboring oriented material. Their presence is independent of the type of nucleation layer used.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Speck, J. S. and Rosner, S. J., Physica B 273–274, 24 (1999).Google Scholar
2. Zheleva, T. S., Nam, O.-H., Bremser, M. D. and Davis, R. F., Appl. Phys. Lett. 71, 2472 (1997).Google Scholar
3. Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 71, 1024 (1997).Google Scholar
4. Hiramatsu, K., Nishiyama, K., Onishi, M., Mizutani, H., Narukawa, M., Motogaito, A., Miyake, H., Iyechika, Y. and Maeda, T., J. Cryst. Gro. 221, 316 (2000).Google Scholar
5. Linthicum, K., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Batchelor, D. and Davis, R., Appl. Phys. Lett. 75, 196 (1999).Google Scholar
6. Ashby, C. I. H., Mitchell, C. C., Han, J., Missert, N. A., Provencio, P. P., Follstaedt, D. M., Peake, G. M. and Griego, L., Appl. Phys. Lett. 77, 3233 (2000).Google Scholar
7. Coultrin, M. E., Willan, C. C., Bartram, M. E., Han, J., Missert, N. A., Crawfore, M. H. and Baca, A. G., MRS Internet J. Nitride Semicond. Res. 4S1, G6.9 (1999).Google Scholar
8. Follstaedt, D. M., Provencio, P. P., Missert, N. A., Mitchell, C. C., Koleske, D. D., Allerman, A. A. and Ashby, C. I. H., Appl. Phys. Lett. 81, 2758 (2002).Google Scholar
9. Koleske, D. D., Fischer, A. J., Allerman, A. A., Mitchell, C. C., Cross, K. C., Kurtz, S. R., Figel, J. J., Fullmer, K. W. and Breiland, W. G., Appl. Phys. Lett. 81, 1940 (2002).Google Scholar
10. Follstaedt, D. M., Provencio, P. P., Koleske, D. D., Mitchell, C. C., Allerman, A. A., Missert, N. A. and Ashby, C. I. H., paper L1.8 in these proceedings.Google Scholar