Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:07:14.577Z Has data issue: false hasContentIssue false

Characterization of Be-Implanted GaN Annealed at High Temperatures

Published online by Cambridge University Press:  15 February 2011

C. Ronning
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC, 27695, USA University of Göttingen, II. Physical Institute, Bunsenstr. 7-9, D-37073 Göttingen, Germany
K.J. Linthicum
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC, 27695, USA
E.P. Carlson
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC, 27695, USA
P.J. Hartlieb
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC, 27695, USA
D.B. Thomson
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC, 27695, USA
T. Gehrke
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC, 27695, USA
R.F. Davis
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC, 27695, USA
Get access

Abstract

Single crystalline (0001) gallium nitride layers were implanted with beryllium and subsequently annealed within the range of 300-1100°C for 10-60 minutes under a flux of atomic nitrogen obtained using a rf plasma source. The nitrogen flux protected the GaN surface from decomposition in vacuum at high temperatures. SIMS measurements revealed that no long range diffusion of the implanted Be occurred at 900 or 1100°C. XRD spectra showed defect-related peaks in the as-implanted samples; these peaks disappeared upon annealing at 900°C and higher for 10 minutes. Photoluminescence (PL) measurements showed one new line at 3.35 eV which provided strong evidence for the presence of optically active Be acceptors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. King, S.W., Barnak, J.P., Bremser, M.D., Tracy, K.M., Ronning, C., Davis, R.F., R.J. Nemanich, J. Appl. Phys. 84, 5248 (1998).Google Scholar
2. Vartuli, C.B., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Lambers, E.S., Zolper, J.C., J. Vac. Sci. & Techn. B 14, 3523 (1996).Google Scholar
3. Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).Google Scholar
4. Edgar, J.H. (ed.), Group III Nitrides, London, INSPEC (1994).Google Scholar
5. Zolper, J.C., Pearton, S.J., Williams, J.S., Tan, H.H., Karlicek, R.J., Stall, R.A., Mater. Res. Soc. Proc. Vol. 449, 981 (1997).Google Scholar
6. Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., Zolper, J.C., Stall, R.A., Appl. Phys. Lett. 72, 1190 (1998).Google Scholar
7. Strite, S., Epperlein, P.W., Dommann, A., Rockett, A., Broom, R.F., Mater. Res. Soc. Proc. Vol. 395, 795 (1996).Google Scholar
8. Strite, S., Pelzmann, A., Suski, T., Leszczynski, M., Jun, J., Rockett, A., Kamp, M., Ebeling, K. J., MRS Internet J. Nitride Semicond. Res. 2, 15 (1997).Google Scholar
9. Zolper, J.C., Han, J., Biefeld, R.M., Deusen, S.B. van, Wampler, W.R., Pearton, S.J., Williams, J.S., Tan, H.H., Karlicek, R.J., Stall, R.A., Mater. Res. Soc. Proc. Vol. 468, ? (1997).Google Scholar
10. Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B., Schlotter, P., Appl. Phys. 72, 1326 (1998).Google Scholar
11. Weeks, T.W. Jr, Bremser, M.D., Ailey, K.S., Carlson, E.P., Perry, W.G., Davis, R.F., Appl. Phys. Lett. 67, 401 (1995); J. Mat. Res. 11, 1011 (1996).Google Scholar
12. Ronning, C., Carlson, E.P., Thomson, D.B., Davis, R.F., Appl. Phys. Lett. 73, 1622 (1998).Google Scholar
13. Dewsnip, D.J., Andrianov, A.V., Harrison, I., Orton, J.W., Lacklison, D.E., Ren, G.B., Hooper, S.E., Cheng, T.S., Foxon, C.T., Semicond. Sci. Technol. 13, 500 (1998).Google Scholar
14. Ziegler, J.F., Biersack, J.P., and Littmark, U., The stopping and ranges of ions in solids, (Pergamon Press, New York, 1985).Google Scholar
15. Wilson, R.G., Pearton, S.J., Abernathy, C.R., and Zavada, J.M., Appl. Phys. Lett. 66, 2238 (1995).Google Scholar
16. Liu, C., Mensching, B., Volz, K., Rauschenbach, B., Appl. Phys. Lett. 71, 2313 (1997).Google Scholar
17. Fischer, S., Wetzel, C., Hailer, E.E., Meyer, B.K., Appl. Phys. Lett. 67, 1298 (1995).Google Scholar
18. Carlson, E.P., Ronning, C., Davis, R.F., unpublished.Google Scholar
19. Ronning, C., Dalmer, M., Deicher, M., Restle, M., Hofsiss, H., Bremser, M.D., Davis, R.F., Mat. Res. Soc. Proc. Vol. 468, 407 (1997), and Ref. therein.Google Scholar
20. Parikh, N., Suvkhanov, A., Lioubtchenko, M., Carlson, E.P., Bremser, M.D., Bray, D., Davis, R.F., Hunn, J., Nucl. Instr. Meth. B 127/128, 463 (1997).Google Scholar
21. Ronning, C., Stötzler, A., Carlson, E.P., Rajago, P., Davis, R.F., unpublished.Google Scholar