Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T17:55:49.486Z Has data issue: false hasContentIssue false

Characterization of amorphous/crystalline silicon interfaces from electrical measurements

Published online by Cambridge University Press:  01 February 2011

Jean-Paul Kleider
Affiliation:
[email protected], Laboratoire de Génie Electrique de Paris, 11 Rue Joliot-Curie, Gif sur Yvette, F-91192, France, +33 1 69851645, +33 1 69418318
A. S. Gudovskikh
Affiliation:
[email protected], St.-Petersburg Physics and Technology Centre for Research and Education of the RAS, Hlopina str. 8/3,, St.-Petersburg, 194021, Russian Federation
Get access

Abstract

Electrical techniques based on capacitance and conductance measurements are powerful tools for interface characterization in semiconductor heterostructures. We here detail their application to the study of the heterointerface formed between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). The main parameters governing the device applications are the conduction and valence band mismatch, and the density of interface states. The presence of a high interface states density can be revealed by capacitance versus temperature and frequency measurements. For very high quality interfaces that are required for instance to reach high conversion efficiencies in solar cells, the usual measurements performed in the dark and at zero or reverse bias are not sensitive enough. We show that the sensivity to interface states can be enhanced by using capacitance measurements under illumination and at a forward bias close or equal to the open-circuit voltage. In this case, the measured capacitance is determined by the diffusion of free carriers in c-Si and limited by recombination at the interface. Regarding the determination of band offsets, the method using a plot of the inverse square capacitance as a function of bias to determine the intercept of the extrapolated linear region is shown to lead to errors even in the absence of any interface charge. This is due to the presence of a strong inversion layer in c-Si at the interface, the effect of which has been ignored so far in the literature. The presence of this strong inversion layer is evidenced from planar conductance measurements on (n) a-Si:H/(p) c-Si structures. We emphasize that these measurements are very sensitive to details of the band structure profile. In particular, it is shown that the temperature dependence of the sheet electron density allows the determination of the conduction band offset between a-Si:H and c-Si with a good precision. We find 0.15 ± 0.04 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Taguchi, M. Terakawa, A. Maruyama, E. and Tanaka, M. Prog. Photovolt. Res. Appl. 13, 481 (2005).Google Scholar
2. Tanaka, M. Taguchi, M. Matsuyama, T. Sawada, T. Tsuda, S. Nakano, S. Hanafusa, H. and Kuwano, Y. Jap. J. Appl. Phys. 31, 3518 (1992).Google Scholar
3. Capasso, F. and Margaritondo, G. (Eds.), Heterojunction Band Discontinuities. Physics and Device Applications (North-Holland, Amsterdam, 1987).Google Scholar
4. Fujiwara, H. and Kondo, M. Appl. Phys. Lett 86, 032112 (2005).Google Scholar
5. Tardon, S. Rösch, M., Brüggemann, R., Unold, T. and Bauer, G. H. J. Non-Cryst. Solids 338-340, 444 (2004).Google Scholar
6. Ley, L. J. Non-Cryst. Solids 114, 238 (1989).Google Scholar
7. Sebastiani, M. Gaspare, L. Di, Capellini, G. Bittencourt, C. and Evangelisti, F. Phys. Rev. Lett. 75, 3352 (1995).Google Scholar
8. Schmidt, M. Korte, L. Laades, A. Stangl, R. Schubert, Ch. Angermann, H. Conrad, E. and Maydell, K.V. Thin Solid Films 515, 7475 (2007).Google Scholar
9. Wronski, C.R. Lee, S. Hicks, M. and Kumar, S. Phys. Rev. Lett. 63, 1420 (1989).Google Scholar
10. Vanecek, M. Stuchlik, J. Kocka, J. and Triska, A. J. Non-Cryst. Solids 77-78, 299 (1985).Google Scholar
11. Rösch, M., Brüggemann, R. and Bauer, G.H. in Proc. of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, edited by Schmid, J. Ossenbrink, H.A. Helm, P. Ehmann, H. and Dunlop, E.D. (1998), pp. 964-967.Google Scholar
12. Lang, D. V. in Thermally Stimulated Relaxation in Solids, edited by Braunlich, P. Topics in Applied Physics Vol. 37 (Springer-Verlag, Berlin, 1979), p. 93.Google Scholar
13. Losee, L. J. Appl. Phys. 46, 2204 (1975).Google Scholar
14. Lang, D. V. J. Appl. Phys. 45, 3023 (1974).Google Scholar
15. Okushi, H. and Tokumaru, Y. Jap. J. Appl. Phys. 19, L335 (1980).Google Scholar
16. Lang, D. V. Cohen, J. D. and Harbison, J. P. Phys. Rev. B 25, 5285 (1982).Google Scholar
17. Kleider, J. P. Thin Solid Films 427, 127 (2003).Google Scholar
18. Nicollian, E. H. and Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley-Interscience, 1982).Google Scholar
19. Kroemer, H. Chien, Wu-Yi, Harris, J. S. and Edwall, D. D. Appl. Phys. Lett. 36, 295 (1980).Google Scholar
20. Forrest, S. R. in Ref. [3], pp. 311375.Google Scholar
21. Veschetti, Y. Muller, J.C. Damon-Lacoste, J., Cabarrocas, P. Rocai, Gudovskikh, A.S. Kleider, J. P. Ribeyron, P.J. and Rolland, E. Thin Solid Films 511-512, 543 (2006).Google Scholar
22. Kleider, J. P. Soro, M. Chouffot, R. Gudovskikh, A. S. Cabarrocas, P. Rocai, Damon-Lacoste, J., Eon, D. and Ribeyron, P.J. J. Non-Cryst. Solids in press.Google Scholar
23. Stangl, R. Kriegel, M. and Schmidt, M. in Conference Record of the 2006 IEEE 4th World Conf. on Photovoltaic Energy Conversion (IEEE, Piscataway, NJ, USA, 2006), pp. 13501353.Google Scholar
24. Gudovskikh, A. S. Kleider, J. P. Damon-Lacoste, J., Cabarrocas, P. Rocai, Veschetti, Y. Muller, J.C. Ribeyron, P.J. and Rolland, E. Thin Solid Films 511-512, 385 (2006).Google Scholar
25. Gudovskikh, A. S. and Kleider, J. P. Appl. Phys. Lett. 90, 034104 (2007).Google Scholar
26. Chouffot, R. Ibrahim, S. Brüggemann, R., Gudovskikh, A. S. Kleider, J. P. Scherff, M., Fahrner, W.R. Cabarrocas, P. Rocai, Eon, D. and Ribeyron, P.J. J. Non-Cryst. Solids in press.Google Scholar
27. Gudovskikh, A. S. Ibrahim, S. Kleider, J. P., Damon-Lacoste, J., Cabarrocas, P. Rocai, Veschetti, Y. and Ribeyron, P.J. Thin Solid Films 515, 7481 (2007).Google Scholar
28. Jacoboni, C. Canali, C. Ottaviani, G. and Quaranta, A. Solid-State Electron. 20, 77 (1977).Google Scholar
29. Kleider, J. P. Gudovskikh, A. S and Cabarrocas, P. Rocai, Appl. Phys. Lett., in press.Google Scholar