Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:39:23.143Z Has data issue: false hasContentIssue false

Characterisation of Nanocrystals by Scanning Capacitance Force Microscopy

Published online by Cambridge University Press:  11 February 2011

Grazia Tallarida
Affiliation:
Laboratorio MDM – INFM, Via Olivetti 2, 20041 Agrate Brianza, Milan, Italy.
Sabina Spiga
Affiliation:
Laboratorio MDM – INFM, Via Olivetti 2, 20041 Agrate Brianza, Milan, Italy.
Marco Fanciulli
Affiliation:
Laboratorio MDM – INFM, Via Olivetti 2, 20041 Agrate Brianza, Milan, Italy.
Get access

Abstract

Scanning capacitance force microscopy is used to localise Sn nanometer sized structures embedded in a silicon oxide thin film. The capacitance variation occurring between probe and sample in presence of a metallic cluster modifies the oscillation amplitude of the AFM probe at twice the frequency of the applied voltage. The extreme localisation of the interaction due to the small geometries involved allows a lateral resolution of few nm. Issues related to the contrast mechanism are discussed with the support 2D finite element calculation of the electric field distribution between probe and sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nakajima, A., Futatsugi, T., Nakao, H., Usuki, T., Horiguchi, N., Yokoyama, N., J. Appl. Phys. 84 1316 (1998);Google Scholar
Meldrum, A., Boatner, L.A., White, C.W., Nucl. Instr. and Meth. B 178, 7 (2001)Google Scholar
2. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E.F., Appl. Phys. Lett. 68, 1377 (1996);Google Scholar
Liu, Z., Lee, C., Narayanan, V., Pei, G., and Kan, E.C., IEEE Transaction on Devices, 49 1606 (2002);Google Scholar
Liu, Z., Kim, M., Narayanan, V., and Kan, E. C., Superlatt. Microstruct., 28, 393(2000)Google Scholar
3. Likharev, K. K., “Single-electron devices and their applications,” Proc. IEEE, 87 606 (1999)Google Scholar
4. Lalic, N., Linnros, J., J. of Luminesc. 80, 263 (1999)Google Scholar
5. Abraham, D. W., Williams, C., Slinkman, J., and Wickramasinghe, H. K., J. Vac. Sci. Technol. B, 9 703 (1991)Google Scholar
6. Kobayashi, K., Yamada, H., K Matsushige, Appl. Phys Lett., 81 2629 (2002)Google Scholar
7. Spiga, S., Ferrari, S., Fanciulli, M., Schmidt, B., Heinig, K.-H., Grötzschel, R., Mücklich, A., Pavia, G., Mat. Res. Soc. Symp. 647 (2001) O11.23. Google Scholar
8. Spiga, S., Fanciulli, M., Ferretti, N., Boscherini, F., D'Acapito, F., Ciatto, G., Schmidt, B., accepted for the pubblication NIMB B (2002)Google Scholar
9. Nonnemacher, M., O'Boyle, M.P., Wickramasinghe, H.K., Appl. Phys. Lett. 58 2921 (1991)Google Scholar
10. Hudlet, S., Saint Jean, M., Guthmann, C., Berger, J., Eur. Phys. J. B2 5 (1998)Google Scholar