Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T13:36:32.471Z Has data issue: false hasContentIssue false

CeO2 Particles for Chemical Mechanical Planarization

Published online by Cambridge University Press:  01 February 2011

Xiandong Feng
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Yie-Shein. Her
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Jackie Davis
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Eric Oswald
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Jin Lu
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Vicky Bryg
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Sara Freeman
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Dave Gnizak
Affiliation:
Electronic Materials Systems, Ferro Corporation 7500 E. Pleasant Valley, Independence, OH 44131, U.S.A.
Get access

Abstract

Nano-sized cerium oxide particles in the size range of 5 to 500nm have been synthesized for use in chemical mechanical planarization (CMP) applications. The CeO2 particles were prepared using cerium nitrate salts with bases such as ammonium water, ethylamine, or other alkylamine /polyalkylamine compounds. Other additives such as urea can be added to affect crystallization and size growth of the final particles. The particle sizes of the resulting CeO2 particles depend on the initial concentrations of cerium salts, additive concentration, and solution pH. Reaction duration seems to have little effect on CeO2 particle sizes. Temperature effects on size were moderate. These CeO2 particles showed excellent surface quality and desirable polishing rate during CMP tests.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Singh, R. K. and Bajaj, R., MRS Bulletin, 743747 (2002).Google Scholar
2. Singh, R. K. Lee, S.-M. Choi, K.-S. Basim, G. B. Choi, W. Chen, Z., and Moudgil, B. M., MRS Bulletin, 752760 (2002).Google Scholar
3. Steigerwald, J. M. Murarka, S. P. and Gutmann, R. J. Chemical Mechanical Planarization of Microelectronic Materials (HohnWiley & Sons, Inc., New York, 1997).Google Scholar
4. Hsu, W. P. Ronnquist, L., and Matijevic, E., Langmuir 4, 3137 (1988).Google Scholar
5. Hakuta, Y., Onai, S., Terayama, H., Adschiri, T., and Arai, K., Journal of Materials Science Letters 17, 12111213 (1998).Google Scholar
6. McCormick, P., in Mechanochemical Processing - A Versatile, Low Cost Technology for the Manufacture of Nano Powders, 1999.Google Scholar
7. Ikegami, T., (National Institute for Research in Inorganic Materials, USA, 1998).Google Scholar
8. Ying, J. Y. Antonelli, D. M. and Sun, T. (Massachusetts Institute of Technology, USA, 1999).Google Scholar
9. Yin, S., Uchida, S., Fujishiro, Y., Ohmori, M., and Sato, T., British Ceramic Transactions 98, 1923 (1999).Google Scholar
10. Chen, P.-L. and Chen, I.-W. J. Am. Ceram. Soc. 76, 1577–83 (1993).Google Scholar
11. Tsuzuki, T. M. G, P.., Materials Science Forum, 343346 (2000).Google Scholar
12. Yu, X. L. , Feng; , Ye, , Xiangrong; , Xin, , Xinquan; , Xue, , Ziling., J. Am. Ceram. Soc. 83, 964966. (2000).Google Scholar
13. Yabe, S. M. , Shigeyoshi; , Yamashita, , Mika; , Yoshida, , Sakae; , Hasegawa, , Kei; , Sato, , Tsugio., Kidorui 36, 2425 (2000).Google Scholar
14. Li, R. Y. , Shinryo; , Yamashita, , Mika; , Momose, , Shigeyosi; , Yoshida, , Sakae; , Yin, , Shu; , Sato, , Tsugio., Solid State Ionics 151, 235241 (2002).Google Scholar
15. Dong, X. L. , Guixia; , Sun, , Jing; , Yan, , Jinghui; , Hong, , Guangyan, Xiyou Jinshu Cailiao Yu Gongcheng 31, 229231 (2002).Google Scholar
16. Xia, B. L. W, I..; Okuyama, K., J. Mater. Chem. 11, 29252927 (2001).Google Scholar
17. Hirano, M. I. , Michio., Advances in Science and Technology (Faenza, Italy) 29, 847854 (2000).Google Scholar
18. Hirano, M. M. , Toshio; , Inagaki, , Michio., Journal of Solid State Chemistry 158, 112117 (2001).Google Scholar
19. Hirano, M. F. , Yuji; , Iwata, , Hiroyuki; , Hotta, , Yuji; , Inagaki, , Michio, J. American Ceramic Society 83, 12871289 (2000).Google Scholar
20. Yu, X. L. , Feng; , Ye, , Xiangrong; , Xin, , Xinquan; , Xue, , Ziling., Journal of the American Ceramic Society 83, 964966 (2000).Google Scholar
21. Bondioli, F. B. C. A.; Leonelli, C.; Manfredini, T., Materials Research Bulletin 34, 21592166 (1999).Google Scholar
22. Djuricic, B. P. , Stephen, Journal of the European Ceramic Society 19, 19251934 (1999).Google Scholar
23. Bai, W. C. K. L.; Stelzer, N. H. J.; Schoonman, J., Solid State Ionics 116, 225228 (1999).Google Scholar
24. Dong, X. H. , Guangyan; , Yu, , Decai; , Yu, , Dashu, Journal of Materials Science & Technology (Shenyang, People's Republic of China) 13, 113116 (1997).Google Scholar