Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T04:00:47.786Z Has data issue: false hasContentIssue false

Cell Viability and Adhesion on as Grown Vertically Aligned Carbon Nanotubes√

Published online by Cambridge University Press:  01 February 2011

Anderson O. Lobo
Affiliation:
Instituto Nacional de Pesquisas Espaciais, Laboratario Associado de Sensores e Materiais, Av. dos Astronautas, 1758, São José dos Campos, N/A, Brazil, 05512 3945-6571, 05512 3945-6717
Erica F. Antunes
Affiliation:
[email protected], Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos, N/A, Brazil
Mariana B. S. Palma
Affiliation:
mariana @las.inpe.br, Universidade do Vale do Paraíba, São José dos Campos, N/A, Brazil
Cristina Pacheco-Soares
Affiliation:
[email protected], Universidade do Vale do Paraíba, São José dos Campos, N/A, Brazil
Vladimir J. Trava-Airoldi
Affiliation:
[email protected], Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos, N/A, Brazil
Evaldo J. Corat
Affiliation:
[email protected], Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos, N/A, Brazil
Get access

Abstract

This work studies cell viability and cell adhesion on as grown dense films of vertically aligned carbon nanotubes (MWCNT). The MWCNTs were produced by a microwave plasma chemical vapor deposition (2,45GHz) on silicon (Si) and titanium (Ti) surfaces, using a nickel and iron catalyst, respectively. The citotoxicity tests (MTT assay and cellular adhesion) were evaluated by various incubations times with Fibroblast L929 mouse cells. The results show very high cell viability and many layers of cells adhered on the surface formed by the nanotubes tips at films grown on Si surfaces. The MWCNT grown on Ti surfaces presented lower cell viability and a reduced number of cells on the surface formed by the nanotubes tips. The different behavior is most probably related to excess iron contamination present in the case of titanium substrate, while nickel catalyst is probably enclosed by the nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zanello, L.P., Zhao, B., Hu, H., Haddon, R.C., Nano Lett. 6, 562567 (2006).Google Scholar
2. Deck, C.P., Vecchio, K., Carbon 44, 267275 (2006).Google Scholar
3. Cui, D., Tian, F., Ozkan, C.S., Wang, M., Gao, H., Tox. Lett., 155 7385 (2005).Google Scholar
4. J.Chlopek, Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., F. Beguin. Carbon 44, 11061111 (2006).Google Scholar
5. Flahaut, E., Durrieu, M.C., Remy–Zolghadri, M., Et Al. J Mater Sci. 41, 24112416 (2006)Google Scholar
6. Price, R.A., Waid, M.C., Karen, M., Haberstroh, K.M., Et Al. Biomat. 24, 18771887 (2003)Google Scholar
7. Worle–Knirsch, J.M., Pulskamp, K., Krug, H.F.. Nano Lett. 6, 12611268 (2006).Google Scholar
8. Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Schwaller, B., Forro, L.. Nano Lett., 6, 11211125 (2006).Google Scholar
9. Webster, T.J., Waid, M.C., Mckenzie, J.L., Et Al. Nanotech., 15, 4854 (2005).Google Scholar
10. Naguib, N.N., Mueller, Y.M., Bojuczuc, P.M., Et Al. Nanotech., 16, 567–71 (2005).Google Scholar
11. Gabay, T., Jakobs, E., Bem–Jacob, E., Et al. Physica A, 21 (350), 611–21 (2005).Google Scholar
12. Correa–Duarte, M.A., Wagner, N., Rojas–Chapana, J., Et Al. Nano Letters, 4, 22332236 (2004).Google Scholar
13. Shim, M., Kam, N.W.S., Chen, R.J., Li, Y., Dai, H.. Nano Lett., 2, 285288 (2002).Google Scholar
14. Klumpp, C., Kostarelos, K., Prato, M., Bianco, A.. Bioch. et Biop. Acta, 1758, 404412 (2006)Google Scholar
15. Smart, S.K., Cassady, A.I., Lu, G.Q., Et Al, 44, 10341047 (2006).Google Scholar
16. Antunes, E. F., Lobo, A. O., Corat, E. J., Trava–Airoldi, V. J., Martin, A.A., Verissimo, C., Carbon, 44, 22022211 (2006).Google Scholar
17. Mosmann, T., Journal of Immunological Methods, 65, 5563 (1983).Google Scholar
18. Hussain, S.M., Hess, K.L., Gearhart, J.M., Et Al, Toxicol In Vitro, 19, 975983 (2005).Google Scholar
19. Arnold, M.S., Stupp, S.I., Hersam, M.C., Nano Lett., 5, 713718 (2005).Google Scholar
20. Dyke, C.A., Stewart, M.P., Tour, J.M., J. Am. Chem. Soc., 127, 44974509 (2005).Google Scholar
21. Georgakilas, V., Voulgaris, D., Va’Zquez, E., Prato, M., Guldi, D.M., Kukovecz, A., Kuzmany, H., J. Am. Chem. Soc., 124 ,1431814319 (2002).Google Scholar
22. Zhao, B., Hu, H., Niyogi, S., Itkis, M.E., Hamon, M.A., Bhowmik, P., Meier, M.S., Haddon, R.C., J. Am. Chem. Soc.,123, 1167311677 (2001).Google Scholar
23. Niyogi, S., Hu, H., Hamon, M.A., Bhowmik, P., Zhao, B., Rozenzhak, S.M., Chen, J., Itkis, M.E., Meier, M.S., Haddon, R.C., J. Am. Chem. Soc.,123, 733734 (2001).Google Scholar