Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T07:59:16.078Z Has data issue: false hasContentIssue false

Cathodoluminescence of MBE-grown cubic AlGaN/GaN multi-quantum wells on GaAs (001) substrates

Published online by Cambridge University Press:  11 February 2011

D. J. As
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
S. Potthast
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
U. Köhler
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
A. Khartchenko
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
K. Lischka
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
Get access

Abstract

Cubic phase GaN/AlxGa1-xN Multi Quantum Well structures were grown by rf-plasma assisted molecular beam epitaxy (MBE) on GaAs (001) substrates. X-ray measurements showed a high phase purity of the epilayers and revealed an Aluminum incorporation between 9 % and 49 %, respectively. The QW luminescence was tuned between 3.25 eV and 3.4 eV by means of the variation of QW barrier Aluminum content and QW width. Strong Cathodoluminescence (CL) from the GaN QWs and the underlying cubic AlxGa1-xN bulk material was observed at room temperature. The spatial localization of the QW emission was unambiguously determined by depth-resolved CL measurements. Combined with a model of energy-dependent penetration, diffusion, and recombination, these variations indicate a value of about 20 nm for the minority carrier diffusion length within the AlxGa1-xN confinement layer. The assignment of AlxGa1-xN bulk and GaN luminescence was further supported by employing a simple effective-mass quantum mechanical model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoç, H., in “Nitride Semiconductors and Devices“, Springer, Berlin (1999)Google Scholar
2. Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).Google Scholar
3. Fiorentini, V., Bernardini, F., Sala, F.D., Carlo, A.D. and Lugli, P., Phys. Rev. B 60, 8849 (1999).Google Scholar
4. Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T. and Henneberger, F., Phys. Rev. B 54 (12), R8381 (1996).Google Scholar
5. Frey, T., As, D.J., Bartels, M., Pawlis, A., Lischka, K., Tabata, A., Fernandez, J.R.L., Silva, M.T.O., Leite, J.R., Haug, C. and Brenn, R., J. Appl. Phys. 89 (5), 2631 (2001).Google Scholar
6. As, D.J., Köhler, U., Potthast, S., Khartchenko, A., Lischka, K., Potin, V. and Gerthsen, D., phys. stat. sol. (c), (to be published) (2003).Google Scholar
7. Wang, C., As, D.J., Schöttker, B., Schikora, D. and Lischka, K., Semicond. Sci. Techn. 14, 161 (1999).Google Scholar
8. As, D.J., Frey, T., Bartels, M., Lischka, K., Goldhahn, R., Shokhovets, S., Tabata, A., Fernandez, J.R.L. and Leite, J.R., J. Crystal Growth 230 (3–4), 421 (2001).Google Scholar
9. Koizumi, T., Okumura, H., Balakrishnan, K., Harima, H., Inoue, I., Ishida, Y., Nagatomo, T., Nakashima, S. and Yoshida, S., J. Crystal Growth 201/202, 341 (1999).Google Scholar
10. As, D.J., Frey, T., Khartchenko, A., Schikora, D., Lischka, K., Goldhahn, R. and Shokhovets, S., Mat. Res. Soc. Symp. Proc. 639, G5.9 (2001).Google Scholar
11. Everhart, T.E. and Hoff, P.H., J. Appl. Phys. 42, 5837 (1971).Google Scholar
12. Brillson, L.J., J. Vac. Sci. and Technol. B 19 (5), 1762 (2001).Google Scholar
13. Kanaya, K. and Okayama, S., J. Phys. D: Appl. Phys. 5 (1), 43 (1972).Google Scholar
14. Leamy, H.J., J. Appl. Phys. 53 (6), R51 (1982).Google Scholar
15. Levin, T.M., Jessen, G.H., Ponce, F.A. and Brillson, L.J., J. Vac. Sci. and Technol. B 17 (6), 2545 (1999).Google Scholar
16. Bigenwald, P., Lefebvre, P., Bretagnon, T. and Gil, B., phys. stat. sol. (b) 216, 371 (1999).Google Scholar
17. Ng, H.M., Gmachl, C., Heber, J.D., Hsu, J.W.P., Chu, S.N.G. and Cho, A.Y., phys. stat. sol. (c), (to be published) (2003).Google Scholar
18. Majewski, J.A., Zandler, G. and Vogl, P., Semicond. Sci. Technol. 13, A90 (1998).Google Scholar
19. Chuang, S.L., in “Physics of Optoelectronic Devices“, Wiley & Sons, New York (1995)Google Scholar
20. As, D.J., “Growth and characterization of MBE-grown cubic GaN, InxGa1-xN, and AlyGa1-yN“, in Optoelectronic Properties of Semiconductors and Superlattices, Vol. 19, edited by Manasreh, M.O. and Ferguson, I., (Gordon and Breach, 2002) pp. 323 Google Scholar