Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T23:03:54.405Z Has data issue: false hasContentIssue false

Carrier Transport in GaAs Nanowires Using Surface Acoustic Waves

Published online by Cambridge University Press:  11 January 2012

A. Hernández-Mínguez
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
M. Möller
Affiliation:
Institut de Ciència dels Materials, Universitat de València, E-46071 València, Spain
C. Pfüller
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
S. Breuer
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
O. Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
M. M. de Lima Jr.
Affiliation:
Institut de Ciència dels Materials, Universitat de València, E-46071 València, Spain
A. García-Cristóbal
Affiliation:
Institut de Ciència dels Materials, Universitat de València, E-46071 València, Spain
A. Cantarero
Affiliation:
Institut de Ciència dels Materials, Universitat de València, E-46071 València, Spain
L. Geelhaar
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
H. Riechert
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
P. V. Santos
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
Get access

Abstract

The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires (NWs) transferred to a SAW beam line on a LiNbO3 crystal. We show that carriers generated in the NW by a focused light spot can be acoustically transported to a second location, where they recombine emitting short light pulses. The results presented here demonstrate the high-frequency manipulation of carriers in NWs without the use of electrical contacts, which opens new perspectives for applications in opto-electronic devices operating at GHz frequencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lieber, C.M. and Wang, Z.L., MRS BULLETIN 32, 99 (2007).Google Scholar
2. Yang, P., Yan, R. and Fardy, M., Nano Letters 10, 1529 (2010).Google Scholar
3. Rocke, C., Zimmermann, S., Wixforth, A., Kotthaus, J.P., Böhm, G. and Weimann, G., Phys. Rev. Lett. 78, 4099 (1997).Google Scholar
4. Shilton, J.M., Talyanskii, V. I., Pepper, M., Ritchie, D.A., Frost, J.E.F., Ford, C.J.B., Smith, C.G. and Jones, G.A.C., J. Phys.: Condens. Matter 8, L531 (1996).Google Scholar
5. Stotz, J.A.H., Hey, R., Santos, P.V. and Ploog, K.H., Nat. Mater. 4, 585 (2005).Google Scholar
6. Couto, O.D.D. Jr., Iikawa, F., Rudolph, J., Hey, R. and Santos, P.V., Phys. Rev. Lett. 98, 036603 (2007).Google Scholar
7. Hernández-Mínguez, A., Biermann, K., Lazić, S., Hey, R. and Santos, P.V., Appl. Phys. Lett. 97, 242110 (2010).Google Scholar
8. Ebbecke, J., Strobl, C. and Wixforth, A., Phys. Rev. B 70, 233401 (2004).Google Scholar
9. Leek, P.J., Buitelaar, M.R., Talyanskii, V. I., Smith, C.G., Anderson, D., Jones, G.A.C., Wei, J. and Cobden, D.H., Phys. Rev. Lett. 95, 256802 (2005).Google Scholar
10. Buitelaar, M.R., Kashcheyevs, V., Leek, P.J., Talyanskii, V.I., Smith, G.C., Anderson, D., Jones, G.A.C., Wei, J. and Cobden, D. H., Phys. Rev. Lett. 101, 126803 (2008).Google Scholar
11. Ebbecke, J., Maisch, S., Wixforth, A., Calarco, R., Meijers, R., Marso, M. and Lüth, H., Nanotechnology 19, 275708 (2008).Google Scholar
12. Völk, S., Schülein, F.J.R., Knall, F., Reuter, D., Wieck, A.D., Truong, T.A., Kim, H., Petroff, P.M., Wixforth, A. and Krenner, J.H., Nano Letters 10, 3399 (2010).Google Scholar
13. Kinzel, J.B., Rudolph, D., Bichler, M., Abstreiter, G., Finley, J.J., Koblmüller, G., Wixforth, A. and Krenner, H.J., Nano Letters 11, 1512 (2011).Google Scholar
14. Parkinson, P., Lloyd-Hughes, J., Gao, Q., Tan, H.H., Jagadish, C., Johnston, M.B. and Herz, L.M., Nano Letters 7, 2162 (2007).Google Scholar
15. Breuer, S., Pfüller, C., Flissikowski, T., Brandt, O., Grahn, H.T., Geelhaar, L. and Riechert, H., Nano Letters 11, 1276 (2011).Google Scholar
16. Yamanouchi, K., Lee, C.H.S., Yamamoto, K., Meguro, T. and Odagawa, H., IEEE Ultrason. Symp. (IEEE, New York, 1992) p. 139.Google Scholar
17. Hernández-Mínguez, A., Möller, M., Breuer, S., Pfüller, C., Somaschini, C., Lazić, S., Brandt, O., García-Cristóbal, A., de Lima, M. M. Jr., Cantarero, A., Geelhaar, L., Riechert, H. and Santos, P.V., Nano Letters, submitted.Google Scholar
18. de Lima, M.M. Jr. and Santos, P.V., Rep. Prog. Phys. 68, 1639 (2005).Google Scholar