Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T20:35:20.585Z Has data issue: false hasContentIssue false

Carbon nanotubes and nanostructures grown at below 400°C

Published online by Cambridge University Press:  26 February 2011

Guan Yow Chen
Affiliation:
[email protected], University of Surrey, Advanced Technology Institute, Daphne Jackson Building, Guildford, Surrey, GU2 7XH, United Kingdom
P.C.H. Poa
Affiliation:
S.J. Henley
Affiliation:
V. Stolojan
Affiliation:
[email protected], University of Surrey, Advanced Technology Institute, United Kingdom
S.R.P. Silva
Affiliation:
Get access

Abstract

In this paper, we report clear evidence for the growth of carbon nanotubes and nanostructures at low substrate temperatures, using direct-current plasma-enhanced chemical vapour deposition. The catalyst particles are mounted on a titanium layer which acts as a thermal barrier, and allows for a larger temperature gradient between the Ni catalyst surface and the substrate. A simple thermodynamic simulation shows that the temperature differential between the substrate growth surface and the growth electrode is determined by the thickness of the titanium layer. This facilitates the growth of nanotubes, as opposed to nanofibres with herring-bone or amorphous structures. The growth properties are discussed as a function of the bias voltage and hydrocarbon concentration. The heating during growth provided solely by the plasma is below 400°C and is dependent on the process conditions and the electrode configuration in the growth chamber. These conditions need to be taken into account when comparing processes across different growth methods and instruments. The novel approach based on the use of a thermal barrier ensures the synthesis of carbon nanotubes at room temperature substrate conditions, which can be attained with a suitable cooling scheme.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., Waite, R.J., J. Catal. 26, 51(1972)Google Scholar
2 Baker, R.T.K., Harris, P.S., Chem. Phys. Carbon 14, 83 (1978)Google Scholar
3 Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998)Google Scholar
4 Meyyappan, M., Delzeit, L., Cassell, A., Hash, D., Plasma Sources Sci. Technol. 12, 205 (2003)Google Scholar
5 Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J., Milne, W.I., J. Appl. Phys. 90, 5308 (2001)Google Scholar
6 Poa, C.H.P., Henley, S.J., Chen, G.Y., Adiaari, A.A.D.T., Giusca, C.E., Silva, S.R.P., J. Appl. Phys. 97, 114308 (2005)Google Scholar
7 Teo, K.B.K., Hash, B., Lacerda, R.G., Rupesinghe, N.L., Bell, M.S., Dalal, S.H., Bose, D., Govindan, T.R., Cruden, B.A., Chhowalla, M., Amaratunga, G.A.J., Meyyappan, M., Milne, W.I., Nano Lett. 4, 921, (2004)Google Scholar
8 Boskovic, B.O., Stolojan, V., Khan, R.U.A., Haq, S., Silva, S.R.P., Nat. Mater. 1, 165, (2002)Google Scholar
9 Boskovic, B.O., Stolojan, V., Zeze, D.A., Forrest, R.D., Silva, S.R.P., Haq, S.J.. J. Appl. Phys. 96, 3443 (2004)Google Scholar
10 Hofmann, S., Kleinsorge, B., Ducati, C., Robertson, J., New J. Phys. 5, 153.1, (2003)Google Scholar
11 Minea, T.M., Point, S., Granier, A., Touzeau, M., Appl. Phys. Lett. 85, 1244, (2004)Google Scholar
12 Chen, G.Y., Poa, C.H.P., Stolojan, V., Henley, S., Silva, S.R.P., MRS Proceeding 858E, HH3.15 (2005)Google Scholar
13 Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P. L., Clausen, B. S., Rostrup-Nielsen, J. R., Abild-Pedersen, F., Norskov, J. K., Nature (London) 427, 426 (2004)Google Scholar
14 Buffat, P., Borel, J.P., Phys. Rev. A 13, 2287 (1976)Google Scholar