Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T14:16:03.847Z Has data issue: false hasContentIssue false

Carbon Nanotube-Based Permeable Membranes

Published online by Cambridge University Press:  15 March 2011

Jason K. Holt
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory Livermore, CA 94551, USA
Hyung Gyu Park
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory Livermore, CA 94551, USA
Olgica Bakajin
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory Livermore, CA 94551, USA
Aleksandr Noy
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory Livermore, CA 94551, USA
Thomas Huser
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory Livermore, CA 94551, USA
David Eaglesham
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory Livermore, CA 94551, USA
Get access

Abstract

A membrane of multiwall carbon nanotubes embedded in a silicon nitride matrix was fabricated for use in studying fluid mechanics on the nanometer scale. Characterization by fluorescent tracer diffusion and scanning electron microscopy suggests that the membrane is void-free near the silicon substrate on which it rests, implying that the hollow core of the nanotube is the only conduction path for molecular transport. Assuming Knudsen diffusion through this nanotube membrane, a maximum helium transport rate (for a pressure drop of 1 atm) of 0.25 cc/sec is predicted. Helium flow measurements of a nanoporous silicon nitride membrane, fabricated by sacrificial removal of carbon, give a flow rate greater than 1×10-6 cc/sec. For viscous, laminar flow conditions, water is estimated to flow across the nanotube membrane (under a 1 atm pressure drop) at up to 2.8×10-5 cc/sec (1.7 μL/min).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sreekumar, T. V., Liu, T., Min, B. G., Guo, H., Kumar, S., Hauge, R. H., and Smalley, R. E., Adv. Mat., 16, 58 (2004).Google Scholar
2. Saito, Y., J. Nanosci. Nanotech., 3, 39 (2003).Google Scholar
3. Li, J., Ng, H. T., Cassell, A., Fan, W., Chen, H., Ye, Q., Koehne, J., Han, J., and Meyyappan, M., Nano. Lett., 3, 597 (2003).Google Scholar
4. Koga, K., Gao, G. T., Tanaka, H., and Zeng, X. C., Nature, 412, 802 (2001).Google Scholar
5. Hummer, G., Rasaiah, J. C., and Noworyta, J. P., Nature, 414, 188 (2001).Google Scholar
6. Gao, H., Kong, Y., Cui, D., and Ozkan, C., Nano. Lett., 3, 471 (2003).Google Scholar
7. Hinds, B. J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L. G., Science, 303, 62 (2004).Google Scholar
8. Elwenspoek, M. C. and Jansen, H. V., Silicon Micromachining; Cambridge University Press: Cambridge, England, 1998; pp 216355.Google Scholar
9. Rijn, C. J. M. and Elwenspoek, M., IEEE Conf. MEMS '95, 1995; pp 8387.Google Scholar