Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T19:07:21.971Z Has data issue: false hasContentIssue false

Carbon nanotube growth on metal-catalyzed substrates in a laser oven apparatus

Published online by Cambridge University Press:  01 February 2011

Y. Suda
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University North 14, West 9, Sapporo 060–0814, Japan
A. Tanaka
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University North 14, West 9, Sapporo 060–0814, Japan
A. Okita
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University North 14, West 9, Sapporo 060–0814, Japan
M. A. Bratescu
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University North 14, West 9, Sapporo 060–0814, Japan
Y. Sakai
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University North 14, West 9, Sapporo 060–0814, Japan
J. Nakamura
Affiliation:
Institute of Materials Science, University of Tsukuba Tsukuba, Ibaraki, 305–8573, Japan
G. Y. Xiong
Affiliation:
Department of Physics, Boston College, 140. Commonwealth Ave, Chestnut Hill, Massachusetts 02467, USA
Z. F. Ren
Affiliation:
Department of Physics, Boston College, 140. Commonwealth Ave, Chestnut Hill, Massachusetts 02467, USA
Get access

Abstract

Carbon nanotubes (CNTs) were grown on Ni- and Fe-coated SiO2/Si substrates in a laser oven apparatus. The grown CNTs were analyzed by scanning electron microscopy. It is speculated that the CNTs grow out from the metal nanoparticle after laser-ablated carbon clusters have been dissolved in it. In a range of oven temperatures between 800 and 1100°C, growth of CNTs was achieved at a temperature ≥ 1000°C. The thickness of the Ni film controlled the CNTs diameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ajayan, P.M. and Zhou, O., “Applications of Carbon Nanotubes,” Carbon Nanotubes Synthesis, Structure, Properties, and Applications, ed. Dresselhaus, M.S., Dresselhaus, G., Avouris, Ph. (Springer-Verlag, Berlin, Heidelberg, 2001) pp. 391420.Google Scholar
2. Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., Science 273, 483 (1996).Google Scholar
3. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Delachapelle, M.L., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E., Nature (London) 388, 756 (1997).Google Scholar
4. Kong, J., Cassell, A.M., Dai, H., Chem. Phys. Lett. 292, 567 (1998).Google Scholar
5. Puretzky, A.A., Schittenhelm, H., Fan, X., Lance, M.J., Allard, L.F., Geohegan, D.B., Phys. Rev. Lett. 65, 245425 (2002).Google Scholar
6. Kataura, H., Kumazawa, Y., Maniwa, Y., Ohtsuka, Y., Sen, R., Suzuki, S., Achiba, Y., Carbon. 38, 1691 (2000).Google Scholar
7. Cassell, A.M., Raymakers, J.A., Kong, J., Dai, H., J. Phys. Chem. B. 103, 6484 (1999).Google Scholar
8. Otuska, K., Kobayashi, S., Takenaka, S., Appl. Catal. A. 190, 261 (2000).Google Scholar
9. Suda, Y., Utaka, K., Bratescu, M.A., Sakai, Y., Tsujino, J., Suzuki, K., Appl. Phys. A. 79, 1331 (2004).Google Scholar
10. Lee, C.J., Park, J., Yu, J.A., Chem. Phys. Lett. 360, 250 (2002).Google Scholar
11. Huang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Appl. Phys. A. 74, 387 (2002).Google Scholar
12. Massalski, T.B. (Ed.), Binary alloy phase diagrams, 2nd ed., Materials Park, Ohio, ASM Intrernational (1990)Google Scholar