Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:37:13.006Z Has data issue: false hasContentIssue false

Carbon Implantation in AlX Ga1−X As

Published online by Cambridge University Press:  21 February 2011

S.J. Pearton
Affiliation:
University of Florida, Gainesville, FL 32611
C.R. Abernathy
Affiliation:
University of Florida, Gainesville, FL 32611
Get access

Abstract

Maximum hole densities of 4×1018 cm-3 were produced in Al0.3Ga0.7As by C+Ga implantation and subsequent annealing at ∼800°C. The activation efficiency decreases with increasing AlAs mole fraction and the use of higher temperatures for the Ga co-implantation, due to a reduced vacancy concentration under these conditions. The C diffusivity is ≤2×10−13 cm2sec−1 at 950°C in implanted Al0.3Ga0.7As, demonstrating that C is a much more thermally stable acceptor than Be, Mg, or Zn.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Abernathy, C.R., Pearton, S.J., Ren, F., Hobson, W.S., Fullowan, T.R., Katz, A., Jordan, A.S. and Kovalchick, J., J.Cryst. Growth 105 375 (1990).Google Scholar
2 deLyon, T.J., Buchan, N., Kirchner, P.D., Woodall, J.M., McInturff, D.T., Scilla, G.J., and Cardone, F., J.Cryst. Growth 111 564 (1991).Google Scholar
3 Konagai, M., Yamada, T., Akatsuka, T., Saito, K., Tokumitsu, E., and Takahashi, K., J.Cryst. Growth 98 167 (1989).Google Scholar
4 Malik, R.J., Nottenburg, R.N., Schubert, E., Walker, J., and Ryan, R.W., Appl. Phys. Lett. 53 2661 (1988).Google Scholar
5 Cunningham, B.T., Baker, J.E., Stockman, S.A., and Stillman, G.E., Appl. Phys. Lett. 56 1760 (1990).Google Scholar
6 Chiu, T.H., Cunningham, J.E., Ditzenberger, J.A., and Jan, W.Y., Appl. Phys. Lett. 57 171 (1990).Google Scholar
7 Tokumitsu, E., Shirakushi, J., Qi, M., Yamada, T., Nozaki, S.,Konagai, M., and Takahashi, K., J.Cryst. Growth 120 301 (1992).Google Scholar
8 Ren, F., Fullowan, T.R., Lothian, J., Wisk, P., Abernathy, C.R., Kopf, R., Emerson, A.B., Downey, S.W., and Pearton, S.J., Appl. Phys. Lett. 59 3613 (1991).Google Scholar
9 Pearton, S.J. and Abernathy, C.R., Appl. Phys, Lett 55 678 (1989).Google Scholar
10 Moll, A.J., Yu, K.M., Walukiewicz, W., Hansen, W.L., and Haller, E.E., Appl.Phys. Lett. 60 2383 (1992).Google Scholar
11 Morton, R., Zhu, B., Lau, S.S., and Poker, D.B., Appl. Phys. Lett. 66 1132 (1995).Google Scholar
12 Madok, J.H. and Haegel, N.M., Mat Sci. Soc. Symp. Proc. 240 817 (1992)Google Scholar
13 Abernathy, C.R., J.Vac.Sci.Technol. A 11 869 (1993).Google Scholar
14 SIMS Measurements performed at Charles Evans and Associates, Redwood City, CA 94063.Google Scholar
15 Cullis, A.G., Smith, P.W., Jacobson, D.C., and Poate, J.M., J. Appl. Phys. 69 1279 (1991).Google Scholar
16 Morris, N. and Sealy, B.J., Nucl. Instr. Meth. in Phys. Res B 42 665 (1989).Google Scholar
17 Pearton, S.J., Hobson, W.S., Von Neida, A.E., Haegel, N.M., Jones, K.S., Morris, N., and Sealy, B.J., J. Appl. Phys. 67 2396 (1990).Google Scholar
18 Zolper, J.C., Sherwin, M.E., Baca, A.G., and Schneider, R.P. Jr. J. Electron. Mater. 24 21 (1995).Google Scholar