Published online by Cambridge University Press: 22 February 2011
Carbon has gained wide acceptance as a p-type dopant for GaAs-based device structures due to its low atomic diffusivity. Carbon doping of InGaAs, however, is complicated by the amphoteric nature of C and difficulty in incorporating C efficiently during epitaxial growth. We have achieved hole concentrations as high as 7x1019 cm−3 in CC14-doped InGaAs grown at low temperature by MOCVD. Growth-related issues include the effect of CCl4 on the alloy composition due to etching during growth, and the incorporation of hydrogen, which passivates the C acceptor and reduces the hole concentration during growth and during the post-growth cool-down. The effect of H passivation on minority carrier transport has been characterized by the zero-field time-of-flight technique. High frequency InP/InGaAs HBTs with a C-doped base have been demonstrated with ft = 62 GHz and fmax = 42 GHz, which is comparable to the best performance reported for MOCVD-grown InP/InGaAs HBTs.