Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:27:14.989Z Has data issue: false hasContentIssue false

Capacitive Field-effect (bio-)chemical Sensors Based on Nanocrystalline Diamond Films

Published online by Cambridge University Press:  31 January 2011

Matthias Bäcker
Affiliation:
[email protected], Aachen University of Applied Sciences, Campus Jülich, Institute of Nano- and Biotechnologies, Juelich, Germany
Arshak Poghossian
Affiliation:
[email protected], Aachen University of Applied Sciences, Campus Juelich, Institute of Nano- and Biotechnologies, Juelich, Germany
Maryam H. Abouzar
Affiliation:
[email protected], Aachen University of Applied Sciences, Campus Jülich, Institute of Nano- and Biotechnologies, Juelich, Germany
Sylvia Wenmackers
Affiliation:
[email protected], Hasselt University, Institute of Materials Research, Diepenbeek, Belgium
Stoffel D. Janssens
Affiliation:
[email protected], Institute for Materials Research, Diepenbeek, Belgium
Ken Haenen
Affiliation:
[email protected], Institute for Materials Research, Diepenbeek, Belgium
Patrick Wagner
Affiliation:
[email protected], Institute for Materials Research, Diepenbeek, Belgium
Michael Josef Schöening
Affiliation:
[email protected], Aachen University of Applied Sciences, Campus Jülich, Institute of Nano- and Biotechnologies, Juelich, Germany
Get access

Abstract

Capacitive field-effect electrolyte-diamond-insulator-semiconductor (EDIS) structures with O-terminated nanocrystalline diamond (NCD) as sensitive gate material have been realized and investigated for the detection of pH, penicillin concentration, and layer-by-layer adsorption of polyelectrolytes. The surface oxidizing procedure of NCD thin films as well as the seeding and NCD growth process on a Si-SiO2 substrate have been improved to provide high pH-sensitive, non-porous thin films without damage of the underlying SiO2 layer and with a high coverage of O-terminated sites. The NCD surface topography, roughness, and coverage of the surface groups have been characterized by SEM, AFM and XPS methods. The EDIS sensors with O-terminated NCD film treated in oxidizing boiling mixture for 45 min show a pH sensitivity of about 50 mV/pH. The pH-sensitive properties of the NCD have been used to develop an EDIS-based penicillin biosensor with high sensitivity (65-70 mV/decade in the concentration range of 0.25-2.5 mM penicillin G) and low detection limit (5 μM). The results of label-free electrical detection of layer-by-layer adsorption of charged polyelectrolytes are presented, too.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rubio-Retama, J., Hernando, J., López-Ruiz, B., Härtl, A., Steinmüller, D., Stutzmann, M., López-Cabarcos, E., and Garrido, J. A., Langmuir 22, 5837 (2006).Google Scholar
2 Hamers, R. J., Butler, J. E., Lasseter, T., Nichols, B. M., Russell, J. N. Jr. , Tse, K.-Y., and Yang, W., Diamond Relat. Mater. 14, 661 (2005).Google Scholar
3 Nebel, C. E., Rezek, B., Shin, D., Uetsuka, H., and Yang, N., J. Phys. D: Appl. Phys. 40, 6443 (2007).Google Scholar
4 Vermeeren, V., Bijnens, N., Wenmackers, S., Daenen, M., Haenen, K., Williams, O. A., Ameloot, M., Ven, M. van de, Wagner, P., and Michiels, M., Langmuir 23, 13193 (2007).Google Scholar
5 Wenmackers, S., Vermeeren, V., Ven, M. van de, Ameloot, M., Bijnens, N., Haenen, K., Michiels, L., and Wagner, P., Phys. Stat. Sol. (a) 206, 391 (2009).Google Scholar
6 Song, K.-S., Degawa, M., Nakamura, Y., Kanazawa, H., Umezawa, H., and Kawarada, H., J. Appl. Phys. 43, L814 (2004).Google Scholar
7 Song, K.-S., Zhang, G.-J., Nakamura, Y., Furukawa, K., Hiraki, T., Yang, J.-H., Funatsu, T., Ohdomari, I., and Kawarada, H., Phys. Rev. E 74, 041919 (2006).Google Scholar
8 Nebel, C. E., Shin, D., Rezek, B., Tokuda, N., Uetsuka, H., Watanabe, H., H., , J. R. Soc.Interface 4, 439 (2007).Google Scholar
9 Abouzar, M. H., Poghossian, A., Razavi, A., Williams, O. A., Bijnens, N., Wagner, P., and Schöning, M. J., Biosens. Bioelectron. 24, 1298 (2009).Google Scholar
10 Poghossian, A., Abouzar, M. H., Razavi, A., Bäcker, M., Bijnens, N., Williams, O. A., Haenen, K., Moritz, W., Wagner, P., and Schöning, M. J., Electrochim. Acta 54, 5981 (2009).Google Scholar
11 Abouzar, M. H., Poghossian, A., Razavi, A., Besmehn, A., Bijnens, N., Williams, O. A., Haenen, K., Wagner, P., and Schöning, M. J., Phys. Stat. Sol. (a) 205, 2141 (2008).Google Scholar
12 Williams, O. A., Douhéret, O., Daenen, M., Haenen, K., Osawa, E., and Takahashi, M., Chem. Phys. Lett. 445, 225 (2007).Google Scholar
13 Daenen, M., Williams, O. A., D'Haen, J., Haenen, K., and Nesladek, M., Phys. Stat. Sol. (a) 203, 3005 (2006).Google Scholar
14 Poghossian, A., and Schöning, M. J., “Silicon-based Chemical and Biological Field-Effect Sensors”, Encyclopedia of Sensors, vol. 9, ed. Grimes, C. A., Dickey, E. C., and Pishko, M. V. (American Scientific Publishers, 2006) pp.171.Google Scholar
15 Decher, G., Eckle, M., Schmitt, J., and Struth, B., Curr. Opin. Coll. Interface Sci. 3, 32 (1998).Google Scholar
16 Schönhoff, M., Curr. Opin. Coll. Interface Sci. 8, 86 (2003).Google Scholar
17 Schönhoff, M., Ball, V., Bausch, A. R., Dejugnat, C., Delorme, N., Glimel, K., Klitzing, R. v., and Steitz, R., Coll. Surf. A 303, 14 (2007).Google Scholar