Published online by Cambridge University Press: 26 February 2011
This study provides information regarding how an intermetallic phase nucleates and grows at an interface between elemental components during solid-state reactions. The reaction of Al/Ni multilayer films was chosen as a model case. The main experimental technique employed was differential scanning calorimetry (DSC), with assistance of other analytical tools such as crosssectional transmission electron microscopy/microanalysis (XTEM/STEM) and thin-film x-ray diffraction. Al/Ni multilayer films were prepared by electron-beam evaporation in high and ultrahigh vacuum systems. We show evidence that interdiffusion of Al and Ni precedes the formation of Al3Ni, forming metastable solid solutions. Using isothermal calorimetry and modeling, we find that Al3Ni subsequently nucleates in the interdiffused region at preferred sites, and that the nucleation sites are quickly consumed in the early stages of Al3Ni formation. The nucleation site density strongly depends on the grain sizes of the deposited films, suggesting that only certain types of intergranular defects can serve as nucleation sites. After coalescence into a continuous layer, Al3Ni thickens through a diffusion-limited process. A kinetic model is applied which yields calculated calorimetric traces in good agreement with experimental data. The results are discussed in light of the the calculated free energy-composition diagram for the Al-Ni system. The implications of our results to the phase selection during thin-film reactions are discussed.