Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:04:43.382Z Has data issue: false hasContentIssue false

Calcium Vanadinite: An Alternative Apatite Host for Cl-rich Wastes

Published online by Cambridge University Press:  03 July 2014

M. R. Gilbert*
Affiliation:
AWE, Aldermaston, Reading, RG7 4PR, UK.
Get access

Abstract

Apatites are often seen as good potential candidates for the immobilization of halide-rich wastes and, in particular, chlorapatite (Ca5(PO4)3Cl) has received much attention in recent years. However, synthesis of chlorapatite waste-forms can produce a complicated multi-phase system, with a number of secondary phases forming, including β-TCP (Ca3(PO4)2), spodiosite (Ca2(PO4)Cl) and pyrophosphate (Ca2P2O7), many of which require elevated temperatures and extended calcinations times to reduce. Calcium vanadinite (Ca5(VO4)3Cl) demonstrates a much simpler phase system, with calcination at 750 °C yielding Ca5(VO4)3Cl together a small quantity of a Ca2V2O7 secondary phase, the formation of which can be retarded by the addition of excess CaCl2. Characterization of compositions doped with SmCl3 as an inactive analogue for AnCl3 show the Cl to be immobilized in the vanadinite whilst the Sm forms a wakefieldite (SmVO4) phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Metcalfe, B. L., Donald, I. W., Fong, S. K., Gerrard, L. A., Strachan, D. M., Scheele, R. D., Mat. Res. Soc. Symp. Proc., 1124, 207 (2009).Google Scholar
Lee, W. E., Gilbert, M. R., Murphy, S. T., Grimes, R. W., J. Am. Ceram. Soc., 96, 2005 (2013).CrossRefGoogle Scholar
Fong, S. K., Donald, I. W., Metcalfe, B. L., J. Alloys Comp., 444/445, 424 (2007).CrossRefGoogle Scholar
Metcalfe, B. L., Donald, I. W., Fong, S. K., Gerrard, L. A., Strachan, D. M., Scheele, R. D., Mat. Res. Soc. Symp. Proc., 985, 157 (2007).Google Scholar
Fong, S. K., Metcalfe, B. L., Strachan, D., Scheele, R., Mat. Res. Soc. Symp. Proc., 1518, in press (2013).CrossRefGoogle Scholar
Audubert, F., Carpena, J., Lacout, J. L., Tetard, F., Solid Sate Ionics, 95, 113 (1997).10.1016/S0167-2738(96)00570-XCrossRefGoogle Scholar
Stennett, M. C., Pinnock, I. J., Hyatt, N. C., J. Nucl. Mater., 414, 352 (2011).CrossRefGoogle Scholar
Kreidler, H., Am. Mineral., 55, 180 (1970)Google Scholar
Beck, H. P., Douiheche, M., Haberkorn, R., Kohlmann, H., Solid State Sci., 8, 64 (2006)CrossRefGoogle Scholar
Gilbert, M. R., Mat. Res. Soc. Symp. Proc., 1518, in press (2013).10.1557/opl.2013.927CrossRefGoogle Scholar
Liu, J., Lian, H., Shi, C., Sun, J., J. Electrochem. Soc., 152, 880 (2005).CrossRefGoogle Scholar
Ding, W., Wang, J., Zhang, M., Zhang, Q., Su, Q., J. Solid State Chem., 179, 3582 (2006).CrossRefGoogle Scholar
Karkada, N., Porob, D., Kumar, P., ECS Trans., 33, 39 (2010).Google Scholar
Rietveld, H. M., Acta Cryst., 22, 151 (1967).CrossRefGoogle Scholar