Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:53:58.076Z Has data issue: false hasContentIssue false

C60 Buckminsterfullerene

Published online by Cambridge University Press:  28 February 2011

H. W. Kroto*
Affiliation:
School of Chemistry and Molecular SciencesUniversity of Sussex, Brighton, BN1 9QJ, UK
Get access

Abstract

It has taken almost exactly five years to prove that the buckminsterfullerene structure, originally proposed to account for the unexpected stability of the C60 molecule in cluster beam experiments, is actually correct. That an easily-produced, stable compound of pure carbon, the most studied of all the elements, could have been under our noses since time immemorial and have eluded detection for so long seems almost unbelievable. Although the existence of this molecule appears to have boundless prospects for the development of new materials with exciting and novel applications it is worth noting that it was serendipitously discovered during basic science programmes aimed at understanding the nature of processes in space rather than an applied programme aimed at understanding the intrinsic properties of carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1).Alexander, A J. Kroto, H W and Walton, D R M, J Mol Spectrosc, 62, 175 (1976)Google Scholar
2).Avery, L W, Broten, N W, McLeod, J M, Oka, T and Kroto, H W, Astrophys. J., 205, L173 (1976)Google Scholar
3).Klrby, C, Kroto, H W and Walton, D R M, J Mol Spectrosc, 83, 26 (1980)Google Scholar
4).Kroto, H W, Kirby, C Walton, D R M, Avery, L, Broten, N, McLeod, J, Oka, T Astrophys. J., 219, L133 (1978)Google Scholar
5).Broten, N W, Avery, L W, McLeod, J M, Oka, T and Kroto, H W, Astrophys. J., 223, L103 (1978)Google Scholar
6).Oka, T, J. Mol. Spectrosc, 72, 172 (1978)Google Scholar
7).Bell, MB, Kwok, S, Feldman, P A and Matthews, H E, Nature, 295, 389 (1982)Google Scholar
8).Kroto, H W, Chem. Soc Rev., 11, 435 (1982)CrossRefGoogle Scholar
9).Kroto, H W, Int. Rev. Phys. Chem., 1, 309 (1981)Google Scholar
10) Hopkins, J B, Langridge-Smith, P R R, Morse, M D and Smalley, R E, J. Chem. Phys., 78, 1627 (1983)CrossRefGoogle Scholar
11) Heath, J R, Zhang, Q L, O’Brien, S C, Curl, R F, Kroto, H W and Smalley, R E, 109, 359 (1987)Google Scholar
J. Am. Chem. Soc. 109 359 (1987)Google Scholar
12) Kroto, H W, Heath, J R, O’Brien, S C, Curl, R F and Smalley, R E Astrophys J. 314 352 (1987)Google Scholar
13).Kroto, H W, Heath, J, O’Brien, S C, Curl, R F and Smalley, R E, Nature 318 162 (1985)CrossRefGoogle Scholar
14).Kroto, H W, Science 242, 1139 (1988)Google Scholar
15).Curl, R F and Smalley, R E Science 242 1017 (1988)Google Scholar
16).Rohlfing, E A, Cox, D M and Kaldor, A, J. Chem. Phys., 81, 3322 (1984)CrossRefGoogle Scholar
17).Heath, J R, Zhang, Q L, O’Brien, S C, Liu, J R, Curl, R F, Kroto, H W, and Smalley, R E, J. Am. Chem. Soc, 107, 7779 (1985)Google Scholar
18).Liu, Y, O’Brien, S C, Zhang, Q L, Heath, J R, Tittel, F K, Curl, R F, Kroto, H W, and Smalley, R E, Chem. Phys. Lett., 126 215217 (1986)CrossRefGoogle Scholar
19).Zhang, Q L, O’Brien, S C, Heath, J R, Liu, Y, Curl, R F, Kroto, H W, and Smalley, R E, J Phys Chem 90, 525528 (1986)CrossRefGoogle Scholar
20).Heath, J, O’Brien, S C, Curl, R F, Kroto, H W and Smalley, R E, Comm. Cond. Matt. Phys 13, 119141 (1987)Google Scholar
21).Kroto, H W and McKay, K G Nature 331 328 (1988)CrossRefGoogle Scholar
22).Kroto, H W Nature 329, 529 (1987)Google Scholar
23).Gerhardt, Ph, Loffler, S and Homann, K H, Chem. Phys. Letts, 137, 306 (1987)Google Scholar
24).Iljima, S, J. Cryst. Growth, 50, 675 (1980)Google Scholar
25).Schmalz, T G, Seitz, W A, Klein, D J and Hite, G E, J. Am. Chem. Soc., 110, 1113 (1988)Google Scholar
26).Kroto, H W, Chem. in Britain, 26, 4042, 45(Jan 1990)Google Scholar
27).Kraetschmer, W, Fostiropoulos, K and Huffmann, D R, Dusty Objects in the Universe, eds Bussoletti, E and Vittone, A A, Kluwer, Dordrecht (1990)Google Scholar
28).Kraetschmer, W, Fostiropoulos, K and Huffmann, D R, Chem. Phys. Lett. 170, 167 (1990)Google Scholar
29).Hare, J P, Sarkar, A and Kroto, H W, poster, 7th Manchester Astronomical Conference “Molecular Clouds”, University of Manchester (2630 March 1990)Google Scholar
30).Kraetschmer, W, Lamb, L D, Fostiropoulos, K and Huffmann, D R, Nature 347 354 (1990)CrossRefGoogle Scholar
31).Taylor, R, Hare, J P, Abdul-Sada, A K and Kroto, H W, J Chem. Soc Chem. Comm., 1423 (1990)Google Scholar
32).Osawa, E, Kagaku, 25 854 (1970)Google Scholar
33).Yoshida, Z and Osawa, E, “Aromaticity”, Kagaku-Dojin, Kyoto, p 175 (1971)Google Scholar
34).Bochvar, D A and Gal’pern, E G, Dokl. Akad. Nauk SSSR 209 239 (1973) (English)Google Scholar
35).Davidson, R A, Theor. Chim. Acta., 58, 193 (1986)CrossRefGoogle Scholar
36).Haymet, A D J J. Am. Chem. Soc, 108, 319 (1986)CrossRefGoogle Scholar
37).Jones, D E H (Daedalus), New Scientist p245 (3 Nov 1966)Google Scholar
38).Chapman, O L (private communication)Google Scholar
39).Kroto, H W, Polycyclic Hydrocarbons and Astrophysics, ed., Leger, A et al (Reidel, Dordrecht, 1987) p. 197.Google Scholar
40).Heath, J R, Spectroscopy 5 No4 (1990)Google Scholar
41).Kroto, H W and Walton, D R M to be publishedGoogle Scholar
42).Rubin, Y, Diederich, F, Whetton, R and co-workers, , to be published.Google Scholar