Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T16:44:06.444Z Has data issue: false hasContentIssue false

Bulk-heterojunction Based on Blending of Red and Blue Luminescent Silicon Nanocrystals and P3HT Polymer

Published online by Cambridge University Press:  31 January 2011

Vladimir Švrček
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Michio Kondo
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Get access

Abstract

Blending of red and blue photoluminescent silicon nanocrystals (Si-ncs) with poly(3-hexylthiophene (P3HT) conjugated polymer is demonstrated. The room temperature luminescent and ambient conditions stable Si-ncs prepared by electrochemical etching and laser ablation in water are used for the blend fabrication. Furthermore photo-electric properties in parallel configuration on platinum interdugitated contact are shown. Both types of Si-ncs results the bulk-heterojunction formation and photoconductivity is observed when the blends are irradiated AM1.5. The increase in photoconductivity is rather the same and ratio between photo- and dark-conductivity is about 1.7. The nanocrystal oxidation during laser ablation fabrication process in water hinders the transport properties of the blend.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sun, B. Marx, E. and Greenham, N. C. Nano Lett. 3 961 (2003).Google Scholar
2 Brabec, C. J. and Dyakonov, V. in Organic Photovoltaics: Concepts and Realization, edited by Brabec, C. J. Dykonov, V. Parisi, J. and Sariciftci, N. S. (Springer-Verg, Berlin, 2003).Google Scholar
3 Greenham, N. Peng, X. and Alivisatos, A. Phys. Rev. B 54, 17628(1996).Google Scholar
4 Nozik, A. Chem. Phys. Lett., 457 3 (2008).Google Scholar
5 Beard, M. C. Knutsen, K. P. Yu, P. Luther, J. M. Song, Q. Metzger, W. K. Ellingson, R. J. Nozik, A.J. Nano Lett. 7, 2506(2007).Google Scholar
6 Ŝvrèek, V., Fujiwara, H. and Kondo, M. Appl. Phys. Lett. 92, 143301(2008).Google Scholar
7 Ŝvrèek, V., Slaoui, A. and Muller, J.C. J. Appl. Phys., 95, 3158(2004).Google Scholar
8 Ŝvrèek, V., Mariotti, D. and Kondo, M. Optics Express, 17, 520(2009).Google Scholar
9 Nakamura, K, Isaka, T, Funakoshi, Y, Tonomura, Y, Machida, T and Okamoto, K 20th European Photovoltaic Solar Energy Conference, Barcelona, 2005.Google Scholar
10 Ŝvrèek, V., Sasaki, T. Shimizu, T. and Koshizaki, N. Appl. Phys. Lett. 89, 213113(2006).Google Scholar
11 Fabbro, R. Fournier, J. Ballard, P. Devaux, D. and Virmont, J. J. Appl. Phys. 68, 775(1990).Google Scholar
12 Oraevsky, A. A. Letoshkov, V. S. and Esenafiev, R. O. Proceedings of the Workshop “laser ablation: Mechanism and Applications”, Pulsed laser ablation of biotissue. review of ablation mechanisms (Springer, Berlin, 1991).],Google Scholar
13 Garcia, C. Garrido, B. Pellegrino, P. Ferre, R. Moreno, J. A. Morante, J. R. Pavesi, L. and Cazzanelli, M. Appl. Phys.Lett. 82, 1595(2003).Google Scholar
14 Kovalev, D. I. Yaroshetzkii, I. D. Muschik, L. Petrovakoch, T. V. and Koch, F. F. Appl. Phys. Lett. 64, 214(1994).Google Scholar
15 Warner, J. H. Watt, A. A. R. Thomsen, E. Heckenberg, N. Meredith, P. and Rubinsztein-Dunlop, H., J. Phys. Chem. B 109, 9001(2005).Google Scholar
16 Dexter, D. L. J. Chem. Phys. 21, 836(1953).Google Scholar
17 Nayak, L. Raval, M. K. Biswal, B. and Biswal, U. C. Photochem. Photobiol. Sci., 1, 629(2002).Google Scholar
18 Monguzzi, A. Tubino, R. and Meinardi, F. Phys. Rev. B 77, 155122(2008).Google Scholar