Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:48:12.738Z Has data issue: false hasContentIssue false

Bulk Breakdown in AlGaN/GaN HFETs

Published online by Cambridge University Press:  10 February 2011

G. Gradinaru
Affiliation:
ECE Department, University of South Carolina, Columbia, SC 29208, [email protected]
N. C. Kao
Affiliation:
ECE Department, University of South Carolina, Columbia, SC 29208, [email protected]
T. S. Sudarshan
Affiliation:
ECE Department, University of South Carolina, Columbia, SC 29208, [email protected]
Get access

Abstract

A significant source current generated by a carrier multiplication process is observed at large drain voltages in the subthreshold regime, along with simultaneous increase of the gate current and light emission signal. Provided no on-surface premature breakdown takes place, a bulk channel avalanche breakdown process is proposed as the dominant breakdown mechanism for a large range of gate-to-source dc voltages. This process in the GaN channel is responsible for the excess source and drain currents, light emission, and excess gate current beyond its normal value measured in a gate-to-drain diode configuration. The role of the gate bias in controlling the channel vs. the gate breakdown mechanisms is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Kozodgy, P., Denbaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 69, 1438 (1996).Google Scholar
2. Wemple, S. H., Niehaus, W. C., Cox, H. M., Dilorenzo, J. V., and Schlosser, W. O., IEEE Trans. Electron Devices 27, 1013 (1980).Google Scholar
3. Mizuta, H., Yamaguchi, K., and Takahashi, S., IEEE Trans. Electron Devices 34, 2027 (1987).Google Scholar
4. Wada, Y. and Tomizawa, M., IEEE Trans. Electron Devices 35, 1765 (1988).Google Scholar
5. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. New York: Wiley-Interscience, 1981, ch. 6.Google Scholar
6. Fukuta, M., Mimura, T., Suzuki, H., and Suyama, K., IEEE Trans. Electron Devices 25, 559 (1978).Google Scholar
7. Yamamoto, R., Higashisaka, A., and Hasegawa, F., IEEE Trans. Electron Devices 25, 567 (1978).Google Scholar
8. Trew, R. J. and Mishra, U. K., IEEE Electron Devices Lett. 12, 524 (1991).Google Scholar
9. Gradinaru, G. and Sudarshan, T. S., J. AppL. Phys. 73, 7643 (1993).Google Scholar
10. Gradinaru, G., Kao, N. C., Yang, J., Chen, Q., Khan, M. A., and Sudarshan, T. S., Proceedings of MRS 1997 Fall Meeting, Symp. E - Power Semiconductor Materials and Devices (Boston, MA, Dec. 1997).Google Scholar
11. Bahl, S. R., Alamo, J. A. del, IEEE Trans. Electron Devices 41, 2268 (1994).Google Scholar
12. Bahl, S. R., Alamo, J. A. del, Dickmann, J., and Schildberg, S., IEEE Trans. Electron Devices 42, 15 (1995).Google Scholar
13. Chau, H. F., Pavlidis, D., and Tomizawa, K., IEEE Trans. Electron Devices 38, 213 (1991).Google Scholar
14. Moolji, A. A., Bahl, S. R., and Alamo, J. A. del, IEEE Electron Devices Lett. 15, 313 (1994).Google Scholar
15. Eisenbeiser, k. W., East, J. R., and Haddad, G. I., IEEE Electron Devices 42, 1778 (1996).Google Scholar