Published online by Cambridge University Press: 10 February 2011
A significant source current generated by a carrier multiplication process is observed at large drain voltages in the subthreshold regime, along with simultaneous increase of the gate current and light emission signal. Provided no on-surface premature breakdown takes place, a bulk channel avalanche breakdown process is proposed as the dominant breakdown mechanism for a large range of gate-to-source dc voltages. This process in the GaN channel is responsible for the excess source and drain currents, light emission, and excess gate current beyond its normal value measured in a gate-to-drain diode configuration. The role of the gate bias in controlling the channel vs. the gate breakdown mechanisms is described.