Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T10:57:29.123Z Has data issue: false hasContentIssue false

Bulk and Surface Structure of a Ternary Microemulsion

Published online by Cambridge University Press:  22 February 2011

D. D. Lee
Affiliation:
Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA
S. H. Chen
Affiliation:
Dept. of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA
S. K. Satija
Affiliation:
Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD
C. F. Majkrzak
Affiliation:
Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD
Get access

Abstract

Microemulsions are isotropic mixtures of water, oil, and surfactant which self-assemble to form interfacial monolayers with a characteristic length scale on the order of hundreds of Angstroms. Small angle neutron scattering was used to determine the bulk structure of a wateroctane-C10E4 bicontinuous microemulsion. The mean curvature of the surfactant film was verified to be near zero by independently measuring the scattering contributions from the water-surfactant and oil-surfactant interfaces through hydrogen-deuterium contrast variation. The exponentially damped, oscillatory scattering length density profile of the microemulsion near a hydrophobic silicon surface was also observed with neutron reflectivity. The surface reflectivity results as well as the bulk small angle scattering measurements are explained using a simple Ginzburg-Landau theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 The Structure and Conformation of Amphiphilic Membranes, edited by Lipowsky, R., Richter, D., Kremer, K. (Springer, Berlin, 1992).Google Scholar
2 de Gennes, P. G. and Taupin, C., J. Phys. Chem. 86, 2294 (1982); J. Jouffrey, P. Levinson, and P. G. de Gennes, J. Phys. (Paris) 43, 1241 (1982).Google Scholar
3 Kahlweit, M., Strey, R., and Busse, G., Phys. Rev. E 47, 4197 (1993); R. Strey, Ber. Bunsenges. Phys. Chem. 97, 742 (1993).Google Scholar
4 Strey, R., Colloid Polym. Sci. 272, 1005 (1994).Google Scholar
5 McClain, B. R., Lee, D. D., Carvalho, B. L., Mochrie, S. G. J., Chen, S. H., and D.Litster, J., Phys. Rev. Lett 72, 246 (1994).Google Scholar
6 Chen, S. H., Chang, S. L., and Strey, R., J. Appl. Cryst. 24, 721 (1991); S. H. Chen, D. D. Lee, and S. L. Chang, J. Mol. Struct. 296, 259 (1993).Google Scholar
7 Safran, S. A., Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, 1994).Google Scholar
8 Gompper, G. and Schick, M., in Phase Transitions and Critical Phenomena, edited by Domb, C. and Lebowitz, J. (Academic, London, 1994), Vol. 16.Google Scholar
9 Teubner, M. and Strey, R., J. Chem. Phys. 87, 3195 (1985).Google Scholar
10 Strey, R., Winkler, J., and Magid, L., J. Phys. Chem. 95, 7502 (1991); K.-V. Schubert and R. Strey, J. Chem. Phys. 95, 8532 (1991).Google Scholar
11 Auvray, L., Cotton, J. P., Ober, R., and Taupin, C., J. Phys. (Paris) 45, 913 (1984); J. Phys. Chem. 88, 4586 (1984); Physica (Amsterdam) 136B, 281 (1986).Google Scholar
12 Lee, D. D. and Chen, S. H., Phys. Rev. Lett. 73, 106 (1994).Google Scholar
13 Parratt, L. G., Phys. Rev. 95, 359 (1954).Google Scholar