Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:31:54.622Z Has data issue: false hasContentIssue false

Built-in Potential of a Pentacene Pin Homojunction Studied by Ultraviolet Photoemission Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Selina Olthof
Affiliation:
[email protected], TU Dresden, IAPP, Dresden, Germany
Hans Kleemann
Affiliation:
[email protected], TU Dresden, IAPP, Dresden, Germany
Björn Lüssem
Affiliation:
[email protected], TU Dresden, IAPP, Dresden, Germany
Karl Leo
Affiliation:
[email protected], TU Dresden, IAPP, Dresden, Germany
Get access

Abstract

In this paper we investigate the energetic alignment in an organic p-i-n homojunction using ultraviolet photoelectron spectroscopy. The device is made of pentacene and we emploay the small molecules NDN1 for n-doping and NDP2 for p-doping the layers. The full p-i-n structure is deposited stepwise on a silver substrate to learn about the interface dipoles and band bending effects present in the device. From the change in work function between the p- and n-doped layers we gain knowledge of the built-in potential of this junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tang, C. W. and VanSlyke, S. A.. Appl. Phys. Lett. 51 (1987) 913.Google Scholar
2 Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J.. Science 270 (1995) 1789.Google Scholar
3 Harada, K., Werner, A. G., Pfeiffer, M., Bloom, C. J., Elliott, C. M., and Leo, K.. Phys. Rev. Lett. 94 (2005) 036601.Google Scholar
4 Walzer, K., Maennig, B., Pfeiffer, M., and Leo, K.. Chem. Rev. 107 (2007) 1233.Google Scholar
5 Blochwitz, J., Pfeiffer, M., Fritz, T., Leo, K., Alloway, D. M., Lee, P. A., Armstrong, N.R.. Org. Electron. 2 (2001) 97.Google Scholar
6 Harada, K., Riede, M., Leo, K. Hild, O. R., Elliott, C. M.. Phys. Rev. B 77 (2008) 195212.Google Scholar
7 Law, C. W., Lau, K. M., Fung, M. K., Chan, M. Y., Wong, F. L., Lee, C. S., and Leeb, S. T.. Appl. Phys. Lett. 89 (2006) 133511.Google Scholar
8 Singh, Th., Meghdadi, F., Guenes, S., Marjanovic, N., Horowitz, G., Lang, P., Bauer, S., and Sariciftci, N. S.. Adv. Mater. 17 (2005) 2315.Google Scholar
9 Ishii, H., Sugiyama, K., Ito, E., and Seki, K.. Adv. Mater. 11 (1999) 605.Google Scholar
10 Hill, I. G., Schwartz, J., Kahn, A., Org. Electron. 1 (2000) 5.Google Scholar
11 Crispin, X., Geskin, V., Crispin, A., Cornil, J., Lazzaroni, R., Salaneck, W. R., and Bredas, J.-L.. J. Am. Chem. Soc. 124 (2002) 8131.Google Scholar
12 Gao, W. and Kahn, A.. Appl. Phys. Lett., 79 (2001) 10.Google Scholar
13 Koch, N., Elschner, A., Johnson, R. L., and Rabe, J.P. Appl. Surf. Sci. 244 (2005) 593.Google Scholar
14 Amy, F., Chan, C., and Kahn, A.. Org. Electr. 6 (2005) 85.Google Scholar
15 Ding, H. and Gao, Y.. Appl. Surf. Sci. 252 (2006) 3943.Google Scholar
16 Ding, H. and Gao, Y.. J. Appl. Phys. 102 (2007) 043703.Google Scholar
17 Chan, C., Kim, E.-G., Bredas, J.-L., and Kahn, A.. Adv. Funct. Mater. 16 (2006) 831.Google Scholar
18 Olthof, S. and Tress, W., Meerheim, R., Luessem, B., and Leo, K.. J. Appl. Phys. 106 (2009) 103711.Google Scholar
19 Koch, N. and Vollmer, A.. Appl. Phys. Lett. 89 (2006) 162107.Google Scholar
20 Hill, I. G, Rajagopal, A., and Kahn, A. Hu, Y.. Appl. Phys. Lett. 73 (1998) 662.Google Scholar
21 Ihm, K., Heo, H. E, Chung, S., Ahn, J. R., Kim, J., and Kang, T.. Appl. Phys. Lett. 90 (2007) 242111.Google Scholar