Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T04:02:43.727Z Has data issue: false hasContentIssue false

Broad Search of Better Thermoelectric Oxides via First-Principles Computations

Published online by Cambridge University Press:  04 August 2015

Qing Hao
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Arizona, 1130 N Mountain Ave, Tucson, AZ 85721, U.S.A.
Hongbo Zhao
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Arizona, 1130 N Mountain Ave, Tucson, AZ 85721, U.S.A.
Na Lu
Affiliation:
Department of Engineering Technology, University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A.
Get access

Abstract

The advancement of computational tools for material property predictions enables broad search of novel materials for various energy-related applications. However, challenges still exist in accurately predicting the mean free paths (MFPs) of electrons and phonons in a high-throughput frame for thermoelectric property predictions, which largely hinders the computation-driven search for novel materials. In this work, this need is eliminated under the small-grain-size limit, in which these MFPs are restricted by the grain sizes within a bulk material. A new criterion for ZT evaluation is proposed for general nanograined bulk materials and is demonstrated with representative oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, S., Wang, Z., Setyawan, W., Mingo, N., and Curtarolo, S., Phys. Rev. X 1, 021012 (2011).Google Scholar
Bera, C., Soulier, M., Navone, C., Roux, G., Simon, J., Volz, S., and Mingo, N., J. Appl. Phys. 108, 124306 (2010).CrossRefGoogle Scholar
Hao, Q., J. Appl. Phys. 116, 034305 (2014).CrossRefGoogle Scholar
Hao, Q., J. Appl. Phys. 111, 014307 (2012).CrossRefGoogle Scholar
Madsen, G. K. H. and Singh, D. J., Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
Hafner, J., J. Comput. Chem. 29, 2044 (2008).CrossRefGoogle Scholar
Togo, A., Oba, F., and Tanaka, I., Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
Gaultois, M. W., Sparks, T. D., Borg, C. K. H., Seshadri, R., Bonificio, W. D., and Clarke, D. R., Chem. Mater. 25, 2911 (2013).CrossRefGoogle Scholar
Pichanusakorn, P. and Bandaru, P. R., Appl. Phys. Lett. 94, 223108 (2009).CrossRefGoogle Scholar
Ohtaki, M., Araki, K., and Yamamoto, K., J. Electron. Mater. 38, 1234 (2009).CrossRefGoogle Scholar
Jantrasee, S., Pinitsoontorn, S., and Moontragoon, P., J. Electron. Mater. 43, 1689 (2014).CrossRefGoogle Scholar
Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., and Hosono, H., Nature 389, 939 (1997).CrossRefGoogle Scholar
Goldsmid, H. J., Thermoelectric Refrigeration (Plenum Press, New York, 1964).CrossRefGoogle Scholar
Slack, G. A., in Solid State Phys., edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, New York, 1979), pp. 171.Google Scholar
Tian, Z., Esfarjani, K., Shiomi, J., Henry, A. S., and Chen, G., Appl. Phys. Lett. 99, 053122 (2011).CrossRefGoogle Scholar
Opahle, I., Madsen, G. K. H., and Drautz, R., Phys. Chem. Chem. Phys. 14, 16197 (2012).CrossRefGoogle Scholar
Opahle, I., Parma, A., McEniry, E. J., Drautz, R., and Madsen, G. K. H., New J. Phys. 15, 105010 (2013).CrossRefGoogle Scholar
Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M., and Gonze, X., Nat. Commun. 4, 2292 (2013).CrossRefGoogle Scholar
Yang, L. and Ceder, G., Phys. Rev. B 88, 224107 (2013).CrossRefGoogle Scholar
Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., and Ceder, G., Inorg. Chem. 50, 656 (2010).CrossRefGoogle Scholar