Published online by Cambridge University Press: 22 February 2011
With decreasing device geometry to below sub micron dimensions, there is a greater emphasis on reducing the thermal budget by shortening and/or eliminating high temperature processing steps. The use of RTP for borophosphosilicate glass (BPSG) fusion/reflow process, which is conventionally performed in diffusion furnaces in temperature range of 850-900 °C, has gained some acceptance in recent years. BPSG films were prepared by an atmosphericpressure chemical vapor deposition(APCVD) process. BPSG film properties such as stress, shrinkage, dopant uniformity and surface stability, step coverage, and flow angle, have been examined as a function of densification/reflow cycle. We used RTP-only, furnace-only, and RTP/furnace reflow annealing cycles. The impact of various BPSG fusion scenarios on underlying Ti salicide and P-channel and N-channel devices is discussed.