Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T16:11:22.015Z Has data issue: false hasContentIssue false

Boron Segregation and Out-diffusion in Single-Crystal Si 1-y C y

Published online by Cambridge University Press:  01 February 2011

E. J. Stewart
Affiliation:
Center for Photonics and Optoelectronic Materials, Department of Electrical Engineering Princeton University, Princeton NJ
J.C. Sturm
Affiliation:
Center for Photonics and Optoelectronic Materials, Department of Electrical Engineering Princeton University, Princeton NJ
Get access

Abstract

Boron segregation and its effect on carbon diffusion is studied in single-crystal Si1-yCy. We find that boron segregates from silicon to Si0.996C0.004 at a level m=[B]SiC/[B]Si = 1.7 during a 2 hour, 850°Cannealin N2. After this anneal, if most of the carbon is then removed from the Si1-yCy layer (via an oxidation-enhanced out-diffusion process), most of the boron segregation is removed as well. This argues against immobile B-C defects as the predominant mechanism driving the segregation. Boron is shown to increase carbon diffusion during the N2 anneal, but also appears to enhance carbon precipitation during a subsequent oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scholz, R., Gosele, U., Huhm, J-Y. and Tan, T.Y., Applied Physics Letters, vol. 72 2, p. 200202 (1998).Google Scholar
2. Lanzerotti, L.D., Amour, A. St., Liu, C.W., Sturm, J.C., Watanabe, J.K., and Theodore, N.D., IEEE Electron Device Letters, vol. 17 7, p. 334337 (1996).Google Scholar
3. Ban, I., Ozturk, M.C., and Demirlioglu, E.K., IEEE Transactions on Electrion Devices, vol. 44 9, p. 15441551 (1997).Google Scholar
4. Napolitani, E., Coati, A., DeSalvador, D., Carnera, A., Mirabella, S., Scalese, S., and Priolo, F., Applied Physics Letters, vol. 79 25, p. 41454147 (2001).Google Scholar
5. Stewart, E.J., Carroll, M.S., and Sturm, J.C., MRS Symposium Proceedings, vol. 669, paper J6.9 (2001).Google Scholar
6. Stewart, E.J., Carroll, M.S., and Sturm, J.C., IEEE Electron Device Letters, vol. 22 12, p. 574576 (2001).Google Scholar
7. Carroll, M.S. and Sturm, J.C., Applied Physics Letters, vol. 81 7, p. 12251227 (2002).Google Scholar
8. Carroll, M.S., Sturm, J.C., Napolitani, E., Salvador, D. De, Berti, M., Stangl, J., Bauer, G., and Tweet, D.J., Physical Review B, vol. 64, 073308 (2001).Google Scholar
9. Napolitani, E., Salvador, D. De, Coati, A., Berti, M., Drigo, A.V., Carroll, M.S., Sturm, J.C., Stangl, J., Bauer, G., and Spinella, C., Nuclear Instruments and Methods in Physics Research B, vol. 186, p. 212217 (2002).Google Scholar
10. Taylor, W.J., Tan, T.Y., and Gosele, U., Applied Physics Letters, vol. 62 (25), p. 33363338 (1993).Google Scholar
11. Hu, S.M., Ahlgren, D.C, Ronsheim, P.A., and Chu, J.O., Physical Review Letters 67, 1450 (1991).Google Scholar
12. Hu, S.M., Physical Review Letters, 63, 2492 (1989).Google Scholar
13. Lever, R.F., Bonar, J.M., and Willoughby, A.F.W., Journal of Applied Physics, vol. 83 4, p. 19881994 (1998).Google Scholar
14. Rafferty, C.S., Vuong, H.-H., Eshraghi, S.A., Giles, M.D., Pinto, M.R., and Hillenius, S.J., IEDM Technical Digest, p. 311314 (1993).Google Scholar