Published online by Cambridge University Press: 17 March 2011
Alleviating transient enhanced diffusion (TED) is one among several issues that has to be solved to realize deep sub-micron CMOS. In this paper we present the influence of hydrogen plasma on TED of boron, along with deep level transient spectroscopic (DLTS) studies on defect evolution as a function of anneal temperature. The studies reveal that TED monotonically increases as a function of anneal temperature up to 650°C, where maximum TED occurs. Further increase in anneal temperature reveals TED reduction. The DLTS reveals a corresponding increase in defect density up to 650°C and then decreases when annealed at 850°C for the same amount of time.