Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:08:18.186Z Has data issue: false hasContentIssue false

Bonding Structure of Ultrathin Oxides on Si(110) Surface

Published online by Cambridge University Press:  01 February 2011

Yoshihisa Yamamoto
Affiliation:
[email protected], Tohoku University, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aobaku, Sendai, 980-8578, Japan
Hideaki Togashi
Affiliation:
[email protected], Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku,, Sendai, 980-8578, Japan
Atsushi Kato
Affiliation:
[email protected], Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku,, Sendai, 980-8578, Japan
Maki Suemitsu
Affiliation:
[email protected], Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku,, Sendai, 980-8578, Japan
Yuzuru Narita
Affiliation:
[email protected], Kyusyu Institute of Technology, 1-1, Sensui-mach, Tobata-ku, Kitakyushu, 804-8550, Japan
Yuden Teraoka
Affiliation:
[email protected], Japan Atomic Energy Agency, 1-1-1, Kouto, Sayo-cho, 679-5148, Japan
Akitaka Yoshigoe
Affiliation:
[email protected], Japan Atomic Energy Agency, 1-1-1, Kouto, Sayo-cho, 679-5148, Japan
Get access

Abstract

The thermal oxidation kinetics of Si(110) surface up to oxide layer thickness of 1 ML has been investigated by real-time monitoring of chemical shifted in the Si 2p core-level photoemission using synchrotron radiation. The uptake profiles of every Si oxidation states (Sin+: n = 1 − 4) indicate that the top surface Si(110) oxidation proceeds through a two-step oxidation pathway via Si2+ state, just like the Si(001) surface. In contrast to the Si(001) oxidation, however, Si3+ state is always more abundant than Si4+ state during oxidation. This is related to occurrence of imperfect oxidation of this surface, most probably due to accumulation of compressive strain during oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, T. Takeishi, Y. Hara, H. Okamoto, Y. Phys. Rev. B 4, 1950 (1971).Google Scholar
2. Izawa, R. Kuse, T. Iijima, S. IEDM Tec. Deg. (1987) 2000.Google Scholar
3. Suemitsu, M. Kato, A. Togashi, H. Konno, A. Yamamoto, Y. Teraoka, Y. Yoshigoe, A. Narita, Y. Enta, Y. Jpn. J. Appl. Phys. 46, 1888 (2007).Google Scholar
4. Yamamoto, Y. Togashi, H. Kato, A. Hasegawa, S. Goto, S. Nakano, T. Suemitsu, M. Narita, Y. Yoshigoe, A. Teraoka, Y. 2007 SSDM 324-325 (2007).Google Scholar
5. Togashi, H. Takahashi, Y. Kato, A. Konno, A. Asaoka, H. Suemitsu, M. Jpn. J. Appl. Phys. 46, 3239 (2007).Google Scholar
6. Yamamoto, Y. Togashi, H. Kato, A. Takahashi, Y. Konno, A. Teraoka, Y. Yoshigoe, A. Suemitsu, M., Appl. Surf. Sci. (in press).Google Scholar
7. Niwano, M. Katakura, H. Takeda, Y. Takakuwa, Y. Miyamoto, N. Hirakawa, A. Yagi, K. J. Vac. Sci. Technol. A9(2), 195 (1991).Google Scholar
8. Irene, E. A. Massoud, H. Z. Tierney, E. J. Electrochem. Soc. 133, 1253 (1986).Google Scholar
9. Kim, N. D. Kim, Y. K. Park, C. Y. Yoem, H. Y. Koh, H. Rotenberg, E. Phys. Rev. B 75, 125309 (2007).Google Scholar
10. Yazyev, O. V. Pasquarello, A. Phys. Rev. Lett. 96, 157601 (2006).Google Scholar
11. Enta, Y. Miyanishi, Y. Irimachi, H. Niwano, M. Suemitsu, M. Miyamoto, N. Shigemasa, E. Kato, H. J. Vac. Sci. Technol. A16(3), 1716 (1998).Google Scholar
12. Yoshigoe, A. Moritani, K. Teraoka, Y. Jpn. J. Appl. Phys. 42, 3976 (2003).Google Scholar
13. Himpsel, F. J. McFeely, F. R. Taleb-Ibrahimi, A., Yarmoff, J. A. Hollinger, G. Phys. Rev. B 38, 6084 (1988).Google Scholar
14. An, T. Yoshimura, M. Ono, I. Ueda, K. Phys. Rev. B 61, 3006 (2000).Google Scholar