Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T06:24:00.907Z Has data issue: false hasContentIssue false

Bonding Characterization of Oxidized PDMS Thin Films

Published online by Cambridge University Press:  01 February 2011

J. J. McMahon
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York-12180
Y. Kwon
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York-12180
J.-Q. Lu
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York-12180
T. S. Cale
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York-12180
R. J. Gutmann
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York-12180
Get access

Abstract

This paper reports on the use of poly(dimethylsiloxane) (PDMS) thin films to bond pairs of glass slides, borosilicate glass, and silicon substrates, with an emphasis on application for wafer-level three-dimensional (3D) heterogeneous integration technology platforms. PDMS films were spin-cast and cured, surface modified using low power oxygen plasma, and then bonded to various materials. These bonds were destructively tested using a four point bending technique. The critical adhesion energy obtained using surface modified PDMS to bond glass slides is 3.0 J/m2. Adhesion energies obtained using unmodified PDMS are 2.8, 1.8, and 1.6 J/m2 for bonded silicon, glass slides, and borosilicate glass, respectively. Correlation of these results to material surface and interface properties indicates that although PDMS has process advantages as a bonding material for heterogeneous integration, its adhesion strength is lower than that of other dielectric bonding glues.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, H., Odom, T., Chiu, D., and Whitesides, G., J. Am. Chem. Soc. 125, 554559 (2003).Google Scholar
2. Groisman, A., Enzelberger, M., and Quake, S. R., Science 300, 955958 (2003).Google Scholar
3. Lee, M.-Y., Srinivasan, A., Ku, B., and Dordick, J. S., Biotechnol. Bioeng. 83(1), 2028 (2003).Google Scholar
4. International Technology Roadmap for Semiconductors (ITRS): 2003 Edition, SIA, 2003.Google Scholar
5. Lu, J.-Q., Jindal, A., Kwon, Y., McMahon, J.J., Rasco, M., Augur, R., Cale, T.S., and Gutmann, R.J., in Proceedings of 2003 IEEE International Interconnect Technology Conference (IITC) 2003, IEEE, 2003, pp. 7476.Google Scholar
6. Ramm, P., Bonfert, D., Ecke, R., Iberl, F., Klumpp, A., Riedel, S., Schulz, S.E., Wieland, R., Zacher, M., and Gessner, T., in Advanced Metallization Conference (AMC) 2001, MRS, 2002, pp. 159165.Google Scholar
7. Lee, K. W., Nakamura, T., One, T., Yamada, Y., Mizukusa, T., Hasimoto, H., Park, K.T., Kurino, H., and Koyanagi, M., in IEEE International Electron Devices Meeting (IEDM) 2000, IEEE, 2000, pp. 165168.Google Scholar
8. Rahman, A., Fan, A., Chung, J., and Reif, R., in Proceedings of IEEE International Interconnect Technology Conference (IITC) 1999, IEEE, 1999, pp. 233235.Google Scholar
9. Gutmann, R.J., Lu, J.-Q., McMahon, J.J., Persans, P.D., Cale, T.S., Eisenbraun, E.T., Castracane, J., and Kaloyeros, A.E., in Nanotech 2003, Vol. 1, NSTI, 2003, pp 530533.Google Scholar
10. Lu, J.-Q., Kwon, Y., Jindal, A., Lee, K.-W., McMahon, J., Rajagopalan, G., Zeng, A.Y., Kraft, R.P., Altemus, B., Xu, B., Eisenbraun, E., Castracane, J., McDonald, J.F., Cale, T.S., Kaloyeros, A., Gutmann, R.J., 19th International VLSI Multilevel Interconnection Conference (VMIC), IMIC, 2002, pp. 445454.Google Scholar
11. Kwon, Y., Jindal, A., McMahon, J.J., Cale, T.S., Gutmann, R.J., and Lu, J.-Q., in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics – 2003, MRS Symp. Proc. Vol. 766, MRS, 2003, pp. 2732 Google Scholar
12. Jindal, A., Lu, J.-Q., Kwon, Y., Rajagopalan, G., McMahon, J.J., Zeng, A.Y., Flesher, H.K., Cale, T.S., and Gutmann, R.J., in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics – 2003, MRS Symp. Proc. Vol. 766, MRS, 2003, pp. 2126.Google Scholar
13. Lu, J.-Q., Lee, K.W., Kwon, Y., Rajagopalan, G., McMahon, J., Altemus, B., Gupta, M., Eisenbraun, E., Xu, B., Jindal, A., Kraft, R.P., McDonald, J.F., Castracane, J., Cale, T.S., Kaloyeros, A.E., and Gutmann, R.J., in Advanced Metallization Conference (AMC) 2002, MRS, 2003, pp. 4551.Google Scholar
14. Hansford, D., Desai, T., Tu, J., and Ferrari, M., Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, Vol. 3258, SPIE, 1998, pp 164168.Google Scholar
15. Jackman, R. J., Duffy, D. C., Cherniavskia, O., and Whitesides, G. M., Langmuir 15, 29732984 (1999).Google Scholar
16. Jo, B.-H., Van Lerberghe, L. M., Motsegood, K. M., and Beebe, D. J., J. Microelectromech. Syst. 9(1), 7681, (2000).Google Scholar
17. Ma, Q., J. Mat. Res. 12(3), 840 (1997).Google Scholar
18. Charalambides, P.G., Lund, J., Evans, A.G., and McMeeking, R.M., J. Appl. Mech. 111, 77 (1989).Google Scholar
19. Kwon, Y., Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 2003 Google Scholar