Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:39:47.078Z Has data issue: false hasContentIssue false

Blue Light Emission from Porous Silicon

Published online by Cambridge University Press:  28 February 2011

X. Y. Hou
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
G. Shi
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
W. Wang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
F. L. Zhang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
P. H. Hao
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
D. M. Huang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
X. F. Jin
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
Xun Wang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, China
Get access

Abstract

Through a post treatment of light emitting porous silicon in boilingwater, a large blue shift of its photoluminescence (PL) spectrum hasbeen observed and a stable blue-green light emission at the peak wavelength down to 500 nm is achieved. The effect of boiling water treatment is suggested to be a kind of oxidation, which could reduce thesize of the Si column, fill up some micropores and strengthen the Siskeleton. The photoluminescence microscopic observation shows that the surface of blue light emitting porous silicon is composed of manysmall uniformly light-emitting domains at the size of several tens of μm. Fourier transform infrared reflection (FTIR) measurements show that the formation of Si-H bonds is not responsible for the visible luminescence in the very thin Si wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett., 57, 1046 (1990)Google Scholar
2. Cullis, A. G. and Canham, L. T., Nature, 353, 335 (1991)Google Scholar
3. Shin, S., Tsai, C., Li, K. -H., Jung, K. H., Campbell, J. C., and Kwong, D. L., Appl. Phys. Lett. 60, 633 (1992)Google Scholar
4. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M. and Muler, F., Appl. Phys. Lett., 59, 304 (1991)Google Scholar
5. Lehmann, V. and Gosele, U., Appl. Phys. Lett., 58, 856 (1991)Google Scholar
6. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., and Koch, F., Appl. Phys. Lett., 61, 943, (1992)Google Scholar
7. Hao, P.H., Hou, X.Y., Zhang, F.L., He, Z.Q., Ding, X.M. and Wang, X., Proc. 21st Intern. Conf. on the Physics of Semiconductors, Eds. Jiang, P. and Zheng, H.Z., World Scientific Co. Singapore (1993)Google Scholar
8. Chen, H. C., Wang, W., Manjularani, K. N., Snyder, L. C. and Zheng, X. L., Mat. Res. Symp. Proc. 256, 197 (1991)Google Scholar
9. Tsai, C., Li, K. -H., Sarathy, J., Shih, S., and Campbell, J. C., Appl. Phys. Lett., 59, 2814 (1991)Google Scholar
10. Tsai, C., Li, K. -H., Kinosky, D. S., Qian, R. Z., Hsu, T. -C., Irby, J. T., Banerjee, S.K., Tasch, A. F., Campbell, Joe C., Hance, B. K., and White, J. M., Appl. Phys. Lett., 60, 1700 (1992)Google Scholar