Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:57:31.689Z Has data issue: false hasContentIssue false

Blocking of Magnetic Long Range Order Between the Monolayer and the Double Layer of Fe(110) on W(110)

Published online by Cambridge University Press:  15 February 2011

Hans-Joachim Elmers
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, D 38678 Clausthal-Zellerfeld
Jens Hauschild
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, D 38678 Clausthal-Zellerfeld
Guohui Liu
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, D 38678 Clausthal-Zellerfeld
Helmut Fritzsche
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, D 38678 Clausthal-Zellerfeld
Ulrich KÖhler
Affiliation:
Institut für Experimentalphysik, Universität Kiel, D 24098 Kiel, Germany
Ulrich Gradmann
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, D 38678 Clausthal-Zellerfeld
Get access

Abstract

In extension of a recent study on submonolayer magnetism of Fe(110) on W(110) [1], we observed the interplay of morphology and magnetic order in Fe(110)-films prepared on W(110) at 300 K, in a range of coverages θ between the pseudomorphic monolayer (θ = 1) and the pseudomorphic double layer (θ = 2), using a combination of STM, SPLEED, CEMS and TOM. Whereas the Curie-temperatures of the monolayer and the double layer are given by Tc(ML) = 230K and Tc(DL) = 450K, respectively, we observe in an interval of 1.20< θ < 1.48 ML a gap of magnetic long range order, for temperatures down to 115K. In CEMS, we observe superparamagnetic fluctuations for T < Tc(ML), but magnetic short range order for T < Tc(ML). The surprising blocking of long range order in the gap can only be explained from a quasi-antiferromagnetic indirect coupling between double-layer islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Elmers, H.J., Hauschild, J., Höche, H., Gradmann, U., Bethge, H., Heuer, D. and Köhler, U., Phys. Rev. Lett. 73, 898 (1994)Google Scholar
2 Przybylski, M. and Gradmann, U., Phys. Rev. Lett. 59, 1152 (1987)Google Scholar
3 Elmers, H.J., Liu, G. and Gradmann, U., Phys. Rev. Lett. 63, 566 (1989)Google Scholar
4 Gradmann, U., Przybylski, M., Elmers, H. J. and Liu, G., Appl. Phys. A 49, 563 (1989)Google Scholar
5 Gradmann, U., Magnetism in Ultrathin Transition Metal Films, in Buschow, K.H.J. (ed), Handbook of Magnetic Materials Vol. 7/1, p. 196, Elsevier Science Publishers, Amsterdam 1993 Google Scholar
6 Weber, W., Kerkmann, D., Pescia, D., Wesner, D. A. and Güntherodt, G., Phys.Rev.Lett. 65, 2058 (1990)Google Scholar
7 Back, C.H., Würsch, C., Kerkmann, D. and Pescia, D., Z. Phys. B 96, 1 (1994)Google Scholar
8 Dürr, W., Taborelli, M., Paul, O., Germar, R., Gudat, W., Pescia, D. and Landolt, M., Phys.Rev.Lett. 62, 206 (1989)Google Scholar
9 Fritzsche, H., Elmers, H.J. and Gradmann, U., J. Magn. Magn. Mat. 135, 343 (1994)Google Scholar
10 Bergholz, R. and Gradmann, U., J. Magn. Magn. Mat. 45, 389 (1984)Google Scholar
11 Fert, A., Gruenberg, P., Barthélémy, A., Petroff, F. and Zinn, W., J. Magn. Magn. Mat. 140–144, 1 (1995)Google Scholar
12 Morup, S., Madsen, M.B., Franck, J., Villadsen, J. and Koch, C.J.W., J. Magn. Magn. Mat. 40, 163 (1983)Google Scholar