Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T07:33:14.259Z Has data issue: false hasContentIssue false

Bismuth-Loaded Polymer Scintillators for Gamma Ray Spectroscopy

Published online by Cambridge University Press:  17 October 2011

Benjmain L. Rupert
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Nerine J. Cherepy
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Benjamin W. Sturm
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Robert D. Sanner
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Zurong Dai
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Stephen A. Payne
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Get access

Abstract

We synthesize a series of polyvinylcarbazole (PVK) monoliths containing varying loadings of triphenyl bismuth as a high-Z dopant and varying fluors, either organic or organometallic, in order to study their use as scintillators capable of gamma ray spectroscopy. A trend of increasing bismuth loading resulting in a better resolved photopeak is observed. For PVK parts with no fluor or a standard organic fluor, diphenylanthracene (DPA), increasing bismuth loading results in decreasing light yield while with samples 1 or 3 % by weight of the triplet harvesting organometallic fluor bis(4,6-difluoropyridinato-N,C2)picolinatoiridium (FIrpic) show increasing light yield with increasing bismuth loading. Our best performing PVK/ BiPh3/FIrpic scintillator with 40 wt % BiPh3 and 3 wt % FIrpic has an emission maximum of 500 nm, a light yield of ∼30,000 photons/MeV, and energy resolution better than 7% FWHM at 662 keV. Replacing the Ir complex with an equal weight of DPA produces a sample with a light yield of ∼6,000 photons/MeV, with an emission maximum at 420 nm and energy resolution of 9% at 662 keV. Transmission electron microscopy studies show that the BiPh3 forms small clusters of approximately 5 nm diameter.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandler, S. R. and Tsou, K. C., Int. J. Appl. Radiat. Is. 15, 419 (1963).Google Scholar
2. Tsou, K. C., IEEE T. Nucl. Sci., 28 (1965).Google Scholar
3. Dannin, J., Sandler, S. R. and Baum, B., Int. J. Appl. Radiat. Is. 16, 589 (1965).Google Scholar
4. Campbell, I. H. and Crone, B. K., Appl. Phys. Lett. 90, 012117 (2007).Google Scholar
5. Mehring, M., Coord. Chem. Rev., 251, 974(2007).Google Scholar
6. Tamaki, N., Polymer J., 42, 103 (2010)Google Scholar
7. Grazulevicius, J. V., Strohriegl, P., Pielichowski, J. and Pielichowski, K., Progr. Polym. Sci., 28, 1297 (2003).Google Scholar
8. Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. and Thompson, M. E., Inorg. Chem., 40, 1704 (2001).Google Scholar
9. Holmes, R. J., Forrest, S. R., Tung, Y.-J., Kwong, R. C., Brown, J. J., Garon, S. and Thompson, M. E., Appl. Phys. Lett., 82, 2422 (2003).Google Scholar
10. Zhang, F. J., Xu, Z., Zhao, D. W., Zhao, S. L., Wang, L. W. and Yuan, G. C., Phys. Scr. 77, 055403 (2008).Google Scholar
11. Estimated from UV-vis.Google Scholar