Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T09:41:46.695Z Has data issue: false hasContentIssue false

Bismuth decoration of electrodeposited platinum thin films with a preferential (100) orientation

Published online by Cambridge University Press:  15 January 2013

E. Bertin
Affiliation:
Institut National de la Recherche Scientifique, Énergie, Matériaux, Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
S. Garbarino
Affiliation:
Institut National de la Recherche Scientifique, Énergie, Matériaux, Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
M.H. Martin
Affiliation:
Institut National de la Recherche Scientifique, Énergie, Matériaux, Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
D. Guay
Affiliation:
Institut National de la Recherche Scientifique, Énergie, Matériaux, Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2, Varennes, Québec, CANADA
Get access

Abstract

Preferentially {100} oriented and polycrystalline platinum electrodes were prepared by potentiostatic electrodeposition. The surface of the electrodes was characterized by deconvolution of the hydrogen desorption region. The catalytic activity for formic acid oxidation was determined by cyclic voltammetry and chronoamperometry. The results indicate that although the maximum current observed in cyclic voltammogram does not increase, the long term performances as measured by chronoamperometry dramatically increase up to 33 times with increased Bi coverage despite the loss of electroactive Pt surface area.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Garbarino, S., Ponrouch, A., Pronovost, S. and Guay, D., Electrochem. Commun., 11, 1449 (2009).CrossRefGoogle Scholar
Bertin, E., Garbarino, S., Ponrouch, A. and Guay, D., J. Power Sources, 206, 20 (2012).CrossRefGoogle Scholar
Bommersbach, P., Chaker, M., Mohamedi, M. and Guay, D., J. Phys. Chem. C, 112, 14672 (2008).CrossRefGoogle Scholar
Hamel, C., Garbarino, S., Irissou, E., Bichat, M.-P. and Guay, D., J. Phys. Chem. C, 114, 18931 (2010).CrossRefGoogle Scholar
Koh, S., Leisch, J., Toney, M. F. and Strasser, P., J. Phys. Chem. C, 111, 3744 (2007).CrossRefGoogle Scholar
Solla-Gullón, J., Vidal-Iglesias, F. J. and Feliu, J. M., Annu. Rep. Prog. Chem. Sect. C, 107, 263 (2011).CrossRefGoogle Scholar
Solla-Gullón, J., Vidal-Iglesias, F. J., López-Cudero, A., Garnier, E., Feliu, J. M. and Aldaz, A., Phys. Chem. Chem. Phys., 10, 3689 (2008).CrossRefGoogle Scholar
Bertin, E., Garbarino, S., Guay, D., Solla-Gullón, J., Vidal-Iglesias, F. J. and Feliu, J. M., J. Power Sources, 225, 323 (2012).CrossRefGoogle Scholar
Perret, P., Brousse, T., Belanger, D. and Guay, D., J. Electrochem. Soc., 156, A645 (2009).CrossRefGoogle Scholar
Solla-Gullón, J., Rodríguez, P., Herrero, E., Aldaz, A. and Feliu, J. M., Phys. Chem. Chem. Phys., 10, 1359 (2008).CrossRefGoogle Scholar
Garbarino, S., Ponrouch, A., Pronovost, S., Gaudet, J. and Guay, D., Electrochem. Commun., 11, 1924 (2009).CrossRefGoogle Scholar
López-Cudero, A., Vidal-Iglesias, F. J., Solla-Gullón, J., Herrero, E., Aldaz, A. and Feliu, J. M., Phys. Chem. Chem. Phys., 11, 416 (2009).CrossRefGoogle Scholar
Clavilier, J., Femandez-Vega, A., Feliu, J. M. and Aldaz, A., J. Electroanal. Chem., 261, 113 (1989).CrossRefGoogle Scholar
Herrero, E., Feliu, J. M. and Aldaz, A., J. Electroanal. Chem., 368, 101 (1994).CrossRefGoogle Scholar
Leiva, E., Iwasita, T., Herrero, E. and Feliu, J. M., Langmuir, 13, 6287 (1997).CrossRefGoogle Scholar