Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:48:35.672Z Has data issue: false hasContentIssue false

Biotinylated Thiophene Copolymer – A Novel Biomaterial for LB Film Assembly

Published online by Cambridge University Press:  15 February 2011

Jayant Kumar
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854
Lynne A. Samuelson
Affiliation:
Biotechnology Division, U. S. Army Natick Research, Development and Engineering Center, Natick, MA 01760
David L. Kaplan
Affiliation:
Biotechnology Division, U. S. Army Natick Research, Development and Engineering Center, Natick, MA 01760
Get access

Abstract

The coupling of a photodynamic protein to an electroactive polymer may be employed in opto-electronic signal transduction for optical displays, color mimicking and biosensor applications. We have synthesized a novel biomaterial, biotin-LC-hydrazide substituted poly(3-undecylthiophene-co-3-thienylcarboxaldehyde) [B-PUAT], which is capable of incorporating any biotinylated molecule through a bridging streptavidin protein. A long spacer group between the conjugated polymer backbone and the biotin side group improves monolayer formation at the airwater interface and enhances the material's ability to bind protein. The LB technique has been employed to couple this biomaterial and streptavidin through the well known biotin-streptavidin complexation. Biotinylated phycoerythrin [B-PE] is incorporated into the above monolayer by binding the unoccupied biotin binding sites on the bound streptavidin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughes, J. H., Jones, C. A. and Friend, , H, R., Nature, 335, 137 (1988).Google Scholar
2. Rughooputh, S. D. D., Heeger, A. J. and Wudl, F., J. Polym. Sci., Polym. Phys. Ed., 25, 101 (1987).CrossRefGoogle Scholar
3. Aime, J. P., Bargain, F., Scott, M., Eckhardt, H., Miller, G. G. and Elsenbaumer, R. L., Phys. Rev. Lett., 62, 55 (1989).Google Scholar
4. Samuelson, L., Rahman, A. K. M., Clough, S., Tripathy, S., Hale, P. D., Inagaki, T., Skotheim, T. A. and Okamoto, Y., Lower - Dimensional Systems and Molecular Electronics, edited by Metzger, R. M., Day, P. and Papavassiliou, G. C., (NATO ASI Series, Series B: Physics, 248, Plenum Press, N. Y., 1990) p. 537.Google Scholar
5. Masuda, H., Tanaka, S. and Kaeriyama, K., Synth. Met., 33, 365 (1989).Google Scholar
6. Wegner, G., Frontiers of Macromolecular Science, (Blackwell Scientific Publications, Oxford, 1989) p. 431.Google Scholar
7. Jen, K. Y., Miller, G. G. and Elsenbaumer, R. L., J. Chem. Soc. Chem. Commun., 1346 (1986).Google Scholar
8. a) Sato, M., Tanaka, S. and Kaeriyama, K., J. Chem. Soc. Chem. Commun., 873 (1986). b) A. Andreatta, Y. Cao, J. C. Chiang, A. J. Heeger and P. Smith, Synth. Met., 26, 383 (1988).Google Scholar
9. Kamath, M., Lim, J. O., Chittibabu, K. G., Sarma, R., Samuelson, L. A., Akkara, J. A., Kaplan, D. L., Marx, K. A., Kumar, J. and Tripathy, S. K., J.M.S.-Pure Appl. Chem., A30(8), 493 (1993).Google Scholar
10. Garlick, R. K. and Giese, R. W., J. Biol. Chem., 263, 210 (1988).Google Scholar
11. Green, N. M., Adv. Protein Chem., 29, 85 (1975).Google Scholar
12. Luo, S. and Walt, D. R., Anal. Chem., 61, 1069 (1989).CrossRefGoogle Scholar
13 Hotta, S., Soga, M. and Sonoda, N., Synth. Met., 26, 267 (1988).CrossRefGoogle Scholar