Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T13:49:04.205Z Has data issue: false hasContentIssue false

Bio-Inspired Mineralization from Aqueous Solutions of Zinc Nitrate Directed by Building Blocks of DNA

Published online by Cambridge University Press:  01 February 2011

Micha Jost
Affiliation:
[email protected], Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstr. 3, Stuttgart, 70569, Germany, +497116893234, +497116893131
Peter Gerstel
Affiliation:
[email protected], Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstr. 3, Stuttgart, D-70569, Germany
Joachim Bill
Affiliation:
[email protected], Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstr. 3, Stuttgart, D-70569, Germany
Fritz Aldinger
Affiliation:
[email protected], Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstr. 3, Stuttgart, D-70569, Germany
Get access

Abstract

In this paper, the suitability of DNA- and RNA-bases, nucleosides and nucleotides, and DNA itself as structure-directing agents for the mineralization of ZnO-based materials is discussed. Those bioorganic molecules are able to trigger the morphology of mineralization products ranging from smooth, homogenous thin films to sponge-like, sheet-like and fibrous products. Besides the investigation of morphological features by scanning electron microscopy, the structural characterization of these materials by X-ray diffraction, vibrational spectroscopy, photoluminescence spectroscopy and photoelectron spectroscopy is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoc, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. Xu, J., Pan, Q., Shun, Y., and Tian, Z., Sens. Actuators B 66, 277 (2000).Google Scholar
3. Niesen, T., Guire, M. De, J. Electroceram. 6, 169 (2001).Google Scholar
4. Gerstel, P., Hoffmann, R. C., Lipowsky, P., Jeurgens, L. P. H., Bill, J., and Aldinger, F., Chem. Mater. 18, 179 (2006).Google Scholar
5. Gerstel, P., Lipowsky, P., Durupthy, O., Hoffmann, R. C., Bellina, P., Bill, J., and Aldinger, F., J. Cer. Soc. Jap. 114, 911 (2006).Google Scholar
6. Bauermann, L. Pitta, Campo, A. del, Bill, J., and Aldinger, Fritz, Chem. Mater. 18, 2016 (2006).Google Scholar
7. Stepanian, S. G., Sheina, G. G., Radchenko, E. D., Blagoi, Y. P., J. Mol. Struct. 131, 333 (1985).Google Scholar
8. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mater. 13, 113 (2001).Google Scholar
9. Aramaki, K., Corros. Sci 43, 1985 (2001).Google Scholar
10. Morioka, H., Tagaya, H., Kadokawa, J.-I., Chiba, K., J. Mater. Sci. Lett. 18, 995 (1999).Google Scholar
11. Poul, L., Jouini, N., and Fiévet, F., Chem. Mater. 12, 3123 (2000).Google Scholar
12. Fasman, G. D., Handbook of Biochemistry and Molecular Biology, Nucleic Acids Vol. I 3rd ed (CRC Press, Cleveland, 1975) p. 76.Google Scholar
13. Hosono, E., Fujihara, S., Kimura, T., Imai, H., J. Colloid Interface Sci. 272, 391 (2004).Google Scholar
14. Jost, M., Bill, J., Aldinger, F., PCT Int. Appl. (27 April 2007).Google Scholar